NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR CURRICULUM OF INTEGRATED MSC IN CHEMISTRY

2023 ONWARD UNDERGRADUATE ADMISSION BATCH

V0:

First Year Curriculum Recommended by members of UGAC	19.08.2023
First Year Curriculum Approved by the Chairman, Senate	19.08.2023
First Year Curriculum & Syllabus ratified in the 71st Senate meeting (Item No. 71.5(b))	18.12.2023
Entire Curriculum and Syllabus Recommended by UGAC	09.12.2024
Entire Curriculum and Syllabus Approved by the 73 rd Senate (Item No. 73.8)	23.03.2025

DEPARTMENT OF CHEMISTRY

Program Name: Integrated M.Sc. in CHEMISTRY

DETAILED CURRICULUM

CURRICULUM OF 2023 ONWARD UNDERGRADUATE ADMISSION BATCH FOR Integrated M.Sc. in

CHEMISTRY

L= Lecture hour/ week; T= Tutorial hour/ week; S= Sessional/ practical hour/ week C= Subject credit point; H= Subject contact hour/ week.

GROUP – 1

FIRST SEMESTER

		Semester - I					
SI. No.	Code	Subject	L	т	S	С	н
1	MAC01	Mathematics - I	3	1	0	4	4
2	CSC01	Computer Programming	2	1	0	3	3
3	XEC01	Engineering Mechanics	2	1	0	3	3
4	XEC02	Basic Electrical and Electronics Engineering	3	0	0	3	3
5	ESC01	Ecology and Environment	2	0	0	2	2
6	CYC01	Engineering Chemistry	3	0	0	3	3
7	CSS51	Computer Programming Laboratory	0	0	3	2	3
8	XES52	Basic Electrical and Electronics Engineering Laboratory	0	0	3	2	3
9	CYS51	Engineering Chemistry Laboratory	0	0	2	1	2
		TOTAL	15	3	8	23	26

SECOND SEMESTER

	Semester - II												
SI. No.	Code	Subject	L	т	S	С	н						
1	MAC02	Mathematics - II	3	1	0	4	4						
2	CSC02	Data Structure and Algorithms	2	1	0	3	3						
3	PHC01	Engineering Physics	2	1	0	3	3						
4	HSC01	Professional Communication	2	0	2	3	4						
5	CSS52	Data Structure and Algorithms Laboratory	0	0	3	2	3						
6	XES51	Engineering Graphics	0	1	3	3	4						
7	PHS51	Engineering Physics Laboratory	0	0	2	1	2						
8	XXS51	Extra Academic Activities	0	0	2	1	2						
		TOTAL	9	4	12	20	25						

GROUP – 2

FIRST SEMESTER

		Semester - I					
SI.	Code	Subject		т	S	с	н
No.	Code	Subject	L	•	3	C	п
1	MAC01	Mathematics - I	3	1	0	4	4
2	CSC01	Computer Programming	2	1	0	3	3
3	XEC01	Engineering Mechanics	2	1	0	3	3
4	PHC01	Engineering Physics	2	1	0	3	3
5	HSC01	Professional Communication	2	0	2	3	4
6	CSS51	Computer Programming Laboratory	0	0	3	2	3
7	XES51	Engineering Graphics	0	1	3	3	4
8	PHS51	Engineering Physics Laboratory	0	0	2	1	2
9	XXS51	Extra Academic Activities	0	0	2	1	2
		TOTAL	11	5	12	23	28

SECOND SEMESTER

		Semester - II					
SI.	Code	Subject		т	S	6	н
No.	Coue	Subject	L	•	3	C	п
1	MAC02	Mathematics - II	3	1	0	4	4
2	CSC02	Data Structure and Algorithms	2	1	0	3	3
3	XEC02	Basic Electrical and Electronics Engineering	3	0	0	3	3
4	ESC01	Ecology and Environment	2	0	0	2	2
5	CYC01	Engineering Chemistry	3	0	0	3	3
6	CYS51	Engineering Chemistry Laboratory	0	0	2	1	2
7	CSS52	Data Structure and Algorithms Laboratory	0	0	3	2	3
	XES52 Basic Electrical and Electronics Engineering			0	3	2	3
8	AL002	Laboratory	0	0	5	2	5
		TOTAL	13	2	8	20	23

		Semester - III					
SI.	Code	Subject		Ŧ	S	(н
No.	Coue	Subject	L	•	3	C	п
1	MAC331	Mathematics - III	3	1	0	4	4
2	CYC301	State of Matter and Chemical	3	1	0	4	4
_		Thermodynamics			•		•
3	CYC302	Atomic Structure and Chemical Bonding	3	0	0	3	3
4	CYC303	Stereochemistry and Basic Principle of	3	0	0	3	3
-	Organic Chemistry		5	0	0	3	5
5	PHC334	Physics II	3	0	0	3	3
6	PHS384	Physics II Laboratory	0	0	3	2	3

7	CYS351	Qualitative Analysis of Organic Samples Laboratory	0	0	3	2	3
		TOTAL	15	2	6	21	23
		Semester - IV		1		1	
SI. No.	Code	Subject	L	т	S	С	Н
1	CYC401	Biochemistry: Structure and Function	3	0	0	3	3
2	CYC402	Phase-Equilibrium and Chemical Kinetics	3	1	0	4	4
3	CYC403	Chemistry of Elements and Radioactivity	3	1	0	4	4
4	CYC404	Organic Reaction Mechanism and Reactive Intermediates	3	1	0	4	4
5	CYE411/ CYE412	Departmental Elective 1	3	0	0	3	3
6	CYS451	Thermodynamic Properties of Solution and Mixture Laboratory	0	0	4	2	4
7	CYS452	Identification of Acidic and Basic Radicals Laboratory	0	0	4	2	4
8	CYS453	Biochemistry Laboratory	0	0	3	2	3
		TOTAL	15	3	11	24	29
		Semester - V					
SI. No.	Code	Subject	L	т	S	с	Н
1	CYC501	Fundamentals of Electrochemistry and Data Analysis	3	1	0	4	4
2	CYC502	Chemistry in Solution and Solid State Chemistry	3	1	0	4	4
3	CYC503	Chemistry of Heterocyclic Compounds	3	0	0	3	3
4	CYC504	Industrial Chemistry	3	0	0	3	3
5	CYC505	Ionic Equilibria and Surface Chemistry	3	0	0	3	3
6	CYS551	Chemical Kinetics, Surface Chemistry and ConductometricAnalysis	0	0	3	2	3
7	CYS552	Quantitative Estimation of Metal lons in Mixture	0	0	4	2	4
8	CYS553	Quantitative Analysis of Organic Samples	0	0	3	2	3
		TOTAL	15	2	10	23	27
		Semester - VI					
SI. No.	Code	Subject	L	т	S	С	Н
1	CYC601	Basics of Photochemistry, Spectroscopy and Group Theory	3	1	0	4	4
2	CYC602	Coordination Chemistry	3	1	0	4	4
3	CYC603	Reagents in Organic Synthesis	3	1	0	4	4
4	HSC631	Economics and Management Accountancy	3	0	0	3	3
4						1	
4 5	CSC631	Artificial Intelligence & Machine Learning	3	0	2	4	5

	CURRICUL	UM AND SYLLABUS FOR INTEGRATED N	ASC I	N C	HEM	STRY						
7	CYS652	Analysis of Ores and Alloys	0	0	4	2	4					
8	CYS653	Single Step Organic Synthesis Laboratory	0	0	4	2	4					
		TOTAL	15	3	13	25	31					
	1	Semester - VII										
SI. No.	Code	Subject	L	т	S	С	н					
1	MSC731	Principles of Management	3	0	0	3	3					
2	CYC701	Quantum Chemistry	3	1	0	4	4					
3	CYC702	Inorganic Reaction Mechanisms and Magnetochemistry	3	1	0	4	4					
4	CYC703	Concept of Organic Synthesis and Asymmetric Synthesis	3	1	0	4	4					
5	YYO74*	Open Elective	3	0	0	3	3					
6	CYS751	Spectrophotochemical Analysis	0	0	3	2	3					
7	CYS752	Spectrophotometric Estimation of Cations and Anions	0	0	3	2	3					
8	CYS753	Identification of Organic Compounds from Binary Mixture	0	0	4	2	4					
		TOTAL	15	3	10	24	28					
Semester - VIII												
SI. No.	Code	Subject	L	т	S	с	н					
1	CYC801	Chemical, Statistical Thermodynamics and Electrochemistry	3	1	0	4	4					
2	CYC802	Organometallic Compounds and Bioinorganic Chemistry	3	1	0	4	4					
3	CYC803	Pericyclic Reactions and Organic Photochemistry	3	1	0	4	4					
4	CYC804	Spectroscopy: Theory and Applications	3	1	0	4	4					
5	CYE811/ CYE812	Departmental Elective 2	3	0	0	3	3					
6	CYS851	Advanced Practical on Physical Chemistry	0	0	4	2	4					
7	CYS852	Synthesis and Characterisation of Inorganic Complexes	0	0	3	2	3					
8	CYS853	Chromatographic Separation of Organic Compounds	0	0	3	2	3					
		TOTAL	15	4	10	25	29					
		Semester - IX		_			_					
		ose all four (04) DEPTH elective courses from PTH elective course from other two specializat	-		-	ecializ	atior					
SI. No.	Code	Subject	L	т	S	С	н					
		Physical Chemistry Specialization					•					
1	CYE911	Advanced Quantum and Computational Chemistry	3	0	0	3	3					

	CURRICUL	UM AND SYLLABUS FOR INTEGRATED N	ЛSC I	N C	HEMI	STRY	
2	CYE912	Basics of Non-linear Dynamics	3	0	0	3	3
3	CYE913	Advanced Spectroscopic Techniques and Applications of Group Theory	3	0	0	3	3
4	CYE914	Surface Science, Electrode Kinetics and Corrosion Science	3	0	0	3	3
		OR					
		Inorganic Chemistry Specialization					
1	CYE921	Advanced Green Chemistry and Environmental Chemistry	3	0	0	3	3
2	CYE922	Synthetic Methodology for Metal Complexes and Coordination Aggregates	3	0	0	3	3
3	CYE923	Small Molecule Activation, Nuclear Chemistry and Related Spectroscopy	3	0	0	3	3
4	CYE924	Application of Group Theory and Applied Electrochemistry	3	0	0	3	3
		OR					
		Organic Chemistry Specialization					
1	CYE931	Advanced Organic Synthesis	3	0	0	3	3
2	CYE932	Drug Design and Biophysical Chemistry	3	0	0	3	3
3	CYE933	Bioorganic Chemistry & Natural Products	3	0	0	3	3
4	CYE934	Advanced Stereochemistry and Structure Activity Correlation	3	0	0	3	3
5	CYS954	Project I	0	0	3	1	3
6	CYS955	Summer Internship	0	0	0	1	0
		TOTAL	15	0	3	17	18
		Semester - X					
SI. No.	Code	Subject	L	т	S	С	н
1	CYS1051	Project II	0	0	30	6	30
2	CYS1052	Comprehensive Viva	0	0	0	1	0
		TOTAL	0	0	30	7	30

CREDIT UNIT OF THE PROGRAM

Semester	1+11	III	IV	V	VI	VII	VIII	IX	Х	Total
Credit units	43	21	24	23	25	24	25	17	7	209

DEPTH ELECTIVE COURSE BASKETS

THE STUDENTS PRIMARILY WILL OPT FROM THE DEPTH ELECTIVE SUBJECT(S) THAT ARE OFFERED IN A PARTICULAR SEMESTER BY HIS/ HER OWN DEPARTMENT. HOWEVER, A STUDENT CAN OPT FOR DEPTH ELECTIVE SUBJECT(S) THAT ARE OFFERED BY OTHER DEPARTMENT IN A PARTICULAR SEMESTER, WITH THE PERMISSION/ CONSENT FROM HIS/ HER HEAD OF THE DEPARTMENT AND THE CONCERNED TEACHER OF THAT SUBJECT.

Depa	Departmental Electives for Semester IV											
1	CYE411	Analytical and Environmental Chemistry	3	0	0	3	3					
2	CYE412	Chromatographic Separation and Instrumental Methods of Analysis	3	0	0	3	3					
Depa	rtmental E	lectives for Semester VIII										
1	CYE811	Chemistry of Materials: Synthesis, Structure and Application	3	0	0	3	3					
2	CYE812	Molecular Modelling in Chemistry	3	0	0	3	3					

DETAILED SYLLABUS

FIRST YEAR

FINJITLAN										
					f contact he					
Course code	Title of the course	Program Core (PCR)/Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total hours	Credit			
MAC01	Mathematics-I	PCR	3	1	0	4	4			
Pre	e-requisites	Basic concepts	of function	i, limit, diff	erentiation	and inte	gration			
Course outcomes	CO2: Learn the base CO3: Understand applications. CO4: Acquire the applications.	CO4 : Acquire the theoretical knowledge of vector calculus and its engineering applications.								
 applications. CO4: Acquire the theoretical knowledge of vector calculus and its engiapplications. Topics Topics Functions of Single Variable: Review of limit, continuity and differentiability value theorems: Rolle's Theorem, Lagrange's Mean Value Theorem Cauchy's MVT, Taylor's theorem, Taylor's and Maclaurin's series. (8 L) Functions of Several Variables: Limit, continuity and differentiability of fuore of several variables, partial derivatives and their geometrical interprederivatives of composite and implicit functions, derivatives of higher order and commutativity, Homogeneous function, Euler's theorem and its converse differential, Jacobian, Taylor's & Maclaurin's series, Maxima and Minima, Nea and sufficient condition for maxima and minima (no proof). (11 L) Sequences and Series: Real sequences and their convergence, Series, ge series, Comparison test, D Alembert's ratio test, Cauchy's root test, Alter series, Leibnitz's rule, Absolute and conditional convergence. (6 L) Integral Calculus: Review of the idea of integration as a limit of a sum, Mea theorems of integral calculus, Area and length in Cartesian and polar co-ord Volume and surface area of solids of revolution in Cartesian and polar 						(MVT), unctions retation, and their e, Exact cessary positive eometric ernating an value dinates, r forms, 2 L) order of egration, integral,				

	CURRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
Text Books,	Text Books:
and/or reference	 Kreyszig, E., Advanced Engineering Mathematics: 10th edition, Wiley India Edition, 2010.
materials	2. Murray, D.A., Differential and Integral Calculus, FB & C Limited, 2018.
	3. Marsden, J. E; Tromba, A. J.; Weinstein: Basic Multivariable Calculus, Springer, 2014.
	 Murray Spiegel, Schaum's Outline of Vector Analysis, ata McGraw Hill T .Education, 1980
	Reference Books:
	1. Tom Apostal, Calculus-Vol-I & II, Wiley Student Edition, 2011.
	2. Thomas and Finny: Calculus and Analytic Geometry, 11th Edition, Addison
	Wesley.

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	2	3	2	3	1	1	-	-	1	1	1	2
	CO2	2	3	2	3	-	1	-	-	1	1	2	2
MAC01	CO3	2	3	2	3	-	1	1	-	-	2	2	2
	CO4	3	3	2	3	1	1	-	1	-	2	1	2

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Tit	le of the course	Program	Tota	al Number o	of contact ho	nurs	Credit			
Code			Core (PCR) /	Lecture	Tutorial	Practical	Total	orean			
			Electives	(L)	(T)	(P)	Hours				
			(PEL)								
CSC01		Computer	PCR	2	1	0	3	3			
		Programming			•	•					
P	re-re	quisites	Course Asses				, mid-tern	n (MT)			
Desisters				and er	d assessm						
	wled	ge of computer	untruck horizo	-6	CT+MT+E		ana a fia				
Course		CO1 : To understand basics of computer programming, program flow,									
Outcomes	S	programming constructs.									
		CO2 : Develop concepts on basic and complex data types, conditional and iterative statements.									
			the concepts of u	sar dafinad	l functions t	to solve real	time prof	aloms			
			programs that us								
			user defined dat								
		problems.		91	J						
Topics		Introduction to	C: Phases of dev	/eloping a i	running cor	nputer prog	ram in C.	(2L)			
Covered			e and values. C				a types.	Number			
			presentations. Co								
			in C: Constants,	Variables,	Expressio	ons, Operato	ors, and	operator			
		precedence in C	· · ·			-					
		Statements: D	, i	ut-Output	Statement	ts, Compo	und stat	ements,			
		Selection Staten	· · ·				14/1 1				
			cal operators, Pro		. Repetitive	statements	, while co	onstruct,			
		Do-while Construct, For construct. (3L)									
		Arrays. Strings. Multidimensional arrays and matrices. (3L) Pointers: Pointer variables. Declaring and dereferencing pointer variables. Pointer									
	Arithmetic. Examples. Accessing arrays through pointers. Pointer types, Pointers										
			ng operations in (rough poin		n types,				
L			ig oporations in t								

	Dynamic memory allocation. (2L)
	Modular Programming: Functions: The prototype declaration, Function definition. (3L)
	Function call: Passing arguments to a function, by value, by reference. Scope
	variable names. Recursive function calls, Tail recursion. (4 I
	Sorting problem: Sorting in arrays with an example of Bubble sort. Sorting in string (3L
	Search problem: Linear search and binary search. (21
	More Data-types in C: Structures in C: Motivation, examples, declaration, and us
	Operations on structures. Passing structures as function arguments. type definit structures. (4L)
	File input-output in C. Streams. Input, output and error streams. Opening, closic and reading from files. Programming for command line arguments. (3)
Text Books,	Text Books:
and/or	1. P. Deitel, H. Deitel. C How to Program. Pearson Education India, 7th Ed.
reference	2. B. W. Kernighan, Dennis M. Ritchie. The C Programming. Prentice Hall
material	Software Series, 2nd Ed.
	Reference Books:
	1. P. Dey and M. Ghosh. Computer fundamentals and programming in C.
	Oxford press, 2013.
	1. Y. Kanetkar. Let Us C. BPB Publications, Sixteenth edition, 2017.

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CSC01	CO1	2	2	1	-	1	2	-	-	-	-	-	-
	CO2	3	2	1	-	1	1	1	-	-	-	-	-
	CO3	2	2	1	-	-	2	-	-	-	-	-	-
	CO4	3	2	2	-	-	1	-	-	-	-	-	-
	CO5	3	1	2	-	1	2	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

·											
Course	Title of the	Program	Tota	l Number o	of contact ho	ours	Credit				
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total					
		/ Electives	(L)	(T)	(P)	Hours					
		(PEL)	(=)	(•)	(.)	. louio					
XEC01	Engineering Mechanics	PCR	2	1	0	3	3				
Pr	e-requisites										
	•		and	end assess	sment (EA)]		· · ·				
		CT+MT+EA									
Course	CO1: Acquire	CO1 : Acquire knowledge of mechanics and ability to draw free body diagrams.									
Outcome		nowledge of me									
	frame analysis			Ū.							
		calculate centro	id. momen	ts of inertia	for various	shapes.					
		omentum and en				1					
		ge on virtual Wo	07 1	•	plication						
Topics		echanics; measu									
Covered		prce as a vector					rticle: free				
Covered											
		body diagram and conditions of equilibrium of a particle; problems on particles;									
		equilibrium of particles in space. [2 L] Resultant of a system of forces and couples on a rigid body; conditions of									
		•		•	•	•					
	equilibrium o	f a rigid body;	free body	diagrams	of rigid b	odies su	bjected to				

	different types of constraints; simple space problems of rigid bodies. [4 L] Coefficients of static and kinetic friction; problems involving friction; theories of friction on square threaded power screw and flat belt. [5 L] Simple trusses; analysis of trusses by method of joints and method of sections.[5 L] Centre of gravity and centre of mass; centroids of lines, curves and areas; first moment of area; second moment of area; polar moment of inertia; radius of gyration of an area; parallel axis theorem; mass moment of inertia. [4 L] Path, velocity, acceleration; rectilinear and curvilinear motion; motion of system of particles; introduction to the concept of plane kinematics of rigid bodies. [6 L] Newton's second law of motion; dynamic equilibrium and D'Alembert's principle; linear momentum; angular momentum; rectilinear and curvilinear motion; principles of work–energy and impulse–momentum; impact of system of particles; introduction to the concept of plane kinetics of rigid bodies. [12 L] Principle of Virtual Work, Solution of Problems on Mechanics using Principle of Virtual Work.[3 L]
Text Books, and/or reference material	 S. P. Timoshenko and D. H. Young, Engineering Mechanics, 5th Edition J. L. Meriam and L. G. Kraige, Engineering Mechanics, 5th Edition, Wiley India F. P. Beer and E. R. Johnston, Vector Mechanics for Engineers I. H. Shames, Engineering Mechanics

Mapping of COs (Course Outcomes) and POs (Programme Outcomes)

Course	COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	1	-	-	-	-	-	-	-	-	-	-	1
	CO2	1	1	1	1	-	-	-	-	-	-	-	1
XEC01	CO3	1	1	-	-	-	-	-	-	-	-	-	1
	CO4	1	2	-	-	-	-	-	-	-	-	-	1
	CO5	-	2	2	2	2	1	-	-	-	1	-	1

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Total Num	ber of cont	act hours		Credit				
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total					
		Electives	(L)	(T)	(P)	Hours					
		(PEL)									
PHC01	Engineering	PCR	2	1	0	3	3				
	Physics										
Pr	e-requisites Course Assessment methods: [Continuous (CT), mid-term (MT) an										
	end assessment (EA)]										
	NIL CT+MT+EA										
Cours	CO1: To realize	and apply the fu	Indamental	concepts c	of physics su	uch as sup	perposition				
е	principle, simple h	narmonic motion	to real world	l problems.							
Outco	CO2: Learn abo	ut the quantum p	henomenor	n of subato	mic particles	s and its a	pplications				
mes	to the practical fie	ld.									
	CO3: Gain an int	tegrative overvie	w and appli	cations of	fundamenta	l optical pl	henomena				
	such as interferer	•	• •			-1 1					
	CO4: Acquire ba		•		mochanism	of locore	and signal				
	•	•					anu siynai				
Topics	propagation through optical fibers. Harmonic Oscillations - Linear superposition principle, Superposition of two										
Cover	perpendicular os										
ed	Damped and Fo	•									
54			Equation		/ inpitudo	1000110100	, volotity				

	CURRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	resonance, Quality factor, sharpness of resonance. [8 L] Wave Motion : Longitudinal waves, Transverse waves, Wave equation, phase velocity and group velocity, Maxwell's equations, Electro-magnetic waves in free space. [3 L] Introductory Quantum Mechanics - Inadequacy of classical mechanics, Blackbody radiation, Planck's quantum hypothesis, de Broglie's hypothesis, Heisenberg's uncertainty principle and applications, Schrodinger's wave equation and applications to simple problems: Particle in a one-dimensional box, Simple harmonic oscillator, Tunnelling effect. [8 L] Interference & Diffraction - Huygens' principle, Young's experiment, Superposition of waves, Conditions of sustained Interference, Concepts of coherent sources, Interference by division of wavefront, Interference by division of amplitude with examples, The Michelson interferometer and some problems; Fraunhofer diffraction, Single slit, Multiple slits, Resolving power of grating. [13 L] Polarisation - Polarisation, Qualitative discussion on Plane, Circularly and elliptically polarized light, Malus law, Brewster's law, Double refraction (birefringence) - Ordinary and extra-ordinary rays, Optic axis etc.; Polaroid, Nicol prism, Retardation plates and analysis of polarized lights. [5 L] Laser and Optical Fiber - Spontaneous and stimulated emission of radiation, Population inversion, Einstein's A & B co-efficient, Optical resonator and pumping methods, He-Ne laser. Optical Fibre– Core and cladding, Total internal reflection, Calculation of numerical
	aperture and acceptance angle, Applications. [5 L]
Text Books, and/or refere nce materi	 TEXT BOOKS: The Physics of Vibrations and Waves, H. John Pain, Willy and Sons A Text Book of Oscillations and Waves, M. Goswami and S. Sahoo, Scitech Publications Engineering Physics, H. K. Malik and A. K. Singh, McGraw-Hill.
al	
	1. Vibrations and Waves in Physics, Iain G. Main, Cambridge University Press
	2. Quantum Physics, R. Eisberg and R. Resnick, John Wiley and Sons
	 Fundamental of Optics, Jankins and White, McGraw-Hill Optics, A. K. Ghatak, Tata McGraw-Hill
	5. Waves and Oscillations, N. K. Bajaj, Tata McGraw-Hill
	6. Lasers and Non-linear Optics, B. B. Laud, New Age International Pvt Lt

Course	COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	1	1	1	-	-	1	-	-	-	1
PHC01	CO2	3	2	-	2	-	-	-	-	-	-	-	1
PHCUI	CO3	3	2	2	2	1	1	1	1	1	-	1	1
	CO4	3	2	2	2	1	1	1	-	1	-	1	1

Correlation levels 1, 2 or 3 as defined below:1: Slight (Low) 2: Moderate (Medium)3: Substantia 3: Substantial (High)

Course	Title of the	Program Core	Total	ours	Credit			
Code	course	(PCR) /	Lecture	Tutori	Practical	Total		
		Electives (PEL)	(L)	al (T)	(P)	Hours		
CYC01	Engineering	PCR	3	0	0	3	3	
	Chemistry							
Pr	re-requisites	Course Assessn	nent metho	ds [Contin	uous (CT), r	nid-term ((MT) and	
		end assessment (EA)]						
	None	CT+MT+EA						

Course	CO1 : Students will get the knowledge of fundamentals as well industrial applications
Outcomes	polymer, petroleum products, organometallic compounds and others. CO2 : Students will be able to elucidate the structure of different organic compounds at to analyze the structure-property correlation.
	CO3 : Students will be aware on the role played by different metals in biological system and also the ecological impact of metals.
	CO4 : Students will be able to understand and analyze thermodynamical, kinetic as w as electrochemical aspects of chemical systems and apply the understanding in the
	technical field.
Topics	ORGANIC CHEMISTRY
Covered	 i. Polymer chemistry and polymer engineering: Fundamental concept of polymer chemistry; synthesis and application of important polymers, Rubber and plastic materials; vulcanization, structure-property correlation: Concept Molecular weight of polymer, Glass transition temperature. Engineered polymer Thermally stable, flame retardant, Conducting polymer. (5L) ii. Petroleum Engineering and oil refinery: Origin of petroleum, separated principle and techniques of distillation of crude oil, thermal and catalytic crackin of petroleum, uses of different fractions, knocking, anti-knock compounds, octal number and cetane number. High octane and Aviation fuel. Bio-diesel. (3L) iii. Structure elucidation of organic compounds by modern spectroscop methods: Application of UV-Visible (Lambert-Beers law), concept chromophore, auxochrome, hypso-, hyper-, bathochromic, red shift. FT-spectroscopy and Mass spectroscopy (including instrumentation). (4L)
	INORGANIC CHEMISTRY
	 i. Coordination Chemistry: Crystal Field Theory of octahedral and tetrahedral complexes, colour and magnetic properties, LMCT, MLCT, IVCT. Isomerism and stereochemistry.(5L) ii. Bioinorganic Chemistry: Metal ions in biological systems: Fe, Cu.(2L) iii. Industrial Applicationof Organometallic Complexes: π-acid liganometallic stabilization of metal low oxidation state and 18 electron rules, metal carbony and nitrosyls, metal-alkene complexes, Various catalytic cycles of industri
	importance. (4L) iv. Environmental Chemistry: Metal toxicity (As, Hg, Pb and Cd) and remediation.(1L)
	 PHYSICAL CHEMISTRY Chemical Thermodynamics: 2nd law of thermodynamics: Concept thermodynamic engine (Carnotand reverse Carnot cycle), entropy, free energy. Temperature and pressure dependence of entropy and free energy. Change phase: phase diagram of single component system. Cryogenics: Joule Thomso experiment. (5L) Chemical Kinetics:Rate expression of Reversible reaction, parallel reaction, and the system.
	 Consecutive reaction with proper examples. Temp effect on reaction rate.(3L) Catalysis: Types of catalysis, Rate expression for Catalysed reaction, Acid-bas and Enzyme catalysis.(2L) Electrochemistry:EMF, Nernst Equation, Application of electrochemistry
_	chemical processes. Electrochemical cell, Fuel cell, Li-ion battery. (3 L)
Text Books, and/or reference	Suggested Text Books: (i) Physical Chemistry by P. Atkins, Oxford (ii) A guidebook to mechanism in Organic chemistry: Peter Sykes; Pearson Edu. (iii) Inorganic Chemistry Part-I & II, R. L. Dutta, The new book stall
material	Suggested Reference Books: Organic Chemistry:

(ii) Engineering Chemistry: Wiley

(iii) Elementary Organic Spectroscopy: William Kemp, ELBS with Macmillan Inorganic Chemistry:

(i) Inorganic Chemistry: Principle structure and reactivity, J. E. Huheey, E. A. Keiter and R. L. Keiter, Pearson Education

(ii) Bioinorganic Chemistry -- Inorganic Elements in the Chemistry of Life: An Introductionand Guide, 2nd Edition, Wolfgang Kaim, Brigitte Schwederski, Axel Klein.
(iii) Inorganic Chemistry Fourth Edition, Shriver & Atkins, Oxford
Physical Chemistry:
(i) Physical Chemistry by G.W Castellan
(ii) Physical Chemistry by P. C. Rakshit

Mapping of COs (Course Outcomes) and POs (Programme Outcomes)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	1	2	-	-	-	-	-	-	-	-	-	-
CYC01	CO2	1	-	-	-	-	-	2	-	-	-	-	-
CICUI	CO3	1	2	1	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	-	2	-	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	I Number o	of contact ho	ours	Credit					
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total						
		/ Electives	(L)	(T)	(P)	Hours						
		(PEL)			_							
ESC01	Ecology and	PCR	2	0	0	2	2					
	Environment						<u> </u>					
Pr	e-requisites	Course Asse					erm (MT)					
			and		sment (EA)]							
NIL CT+MT+EA												
	Course CO1: Understand the importance of environment and ecosystem. Outcomes CO2: Understand the fundamental aspect of pollutant tracking and it											
Outcome				•		0						
		in natural and a										
		CO3 : Understand the scientific basis of local and as well as global issues. CO4 : Apply of knowledge to develop sustainable solution.										
Taniaa		UNIT – I: INTRODUCTION (2 L)										
Topics Covered		/ nature of	,	ntal Stud	iaa: Dofini	tion So	ana and					
Covered	Importance.	inature of	Environme	intal Stud	ies. Denni		ope, and					
	importance.											
		AMENTALS O		Υ	(9 L)							
		ponents of Envi			()		cosystem.					
		nd Classification										
		ain, Food Web,										
		hur, Phosphoru										
	Conservation.	,			,,		,, , , , , , , , , , , , , , , , ,					
	UNIT-III: FUNE	DAMENTALS O	F ENVIRO	NMENT	(10 L	_)						
	Environmenta	I Pollution: Ai	r pollution	, Water p	ollution, So	il pollutic	on, Marine					
		Environmental Pollution: Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Solid Wastes, and Natural hazards:										
	Floods, earthqu	lakes, cyclones,	and lands	lides.								
		I Issues: Clima	te change	and global	warming; a	cid rain;	and ozone					
	layer depletion.											

CUR	RICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	Environment Quality: Ambient air quality standards, Water quality parameters and standards: pH, Turbidity, Hardness, Sulphate, Phosphates, Iron, Dissolved Oxygen, BOD, and COD.
	UNIT– IV: NATURAL RESOURCES (3 L)
	Mineral Resources, Energy Resources: Conventional and Non-Conventional.
	UNIT- V- GREEN TECHNOLOGY & ENVIRONMENTAL ETHICS (4 L)
	Sustainability: Carbon Sequestration, Green building practices, Green computing; Carrying capacity; and Environment Protection Acts/laws.
Text Books, and/or	 A Basic Course in Environmental Studies. Deswal & Deswal. Pub. Dhanpat Rai & Sons
reference	2. Ecology. Odum. Pub. Oxford & IBH
material	3. Environmental Engineering. Peany et.al. Pub. McGraw Hill
	4. A Text Book of Environmental Engg. Venugpal Rao. Pub. PHI
	 A Basic Course in Environmental Studies. Deswal & Deswal. Pub. Dhanpat Rai & Sons
	6. Environmental Studies. Bharucha. Pub. University of Press
	7. Environmental Chemistry and Pollution, S. S. Dara & D. D. Mishra, S. Chand Publishing

Course	COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12
	CO1	3	-	-	-	-	-	2	-	-	-	-	-
ESC01	CO2	1	-	-	-	-	-	2	-	-	-	-	-
	CO3	2	-	-	-	-	-	2	-	-	-	-	-
	CO4	1	-	3	-	-	2	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	l Number o	of contact ho	ours	Credit										
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total											
		Electives	(L)	(T)	(P)	Hours											
		(PEL)															
HSC01	Professional	PCR	2	0	2	4	3										
	Communication																
Pr	e-requisites	Course A	ssessment	methods [C	Continuous ((CT) and e	end										
			a	ssessment	(EA)]												
	None			CT+EA													
Course	CO1 : Learners	will acquire lingu	istic proficie	ency in term	ns of improve	ement in t	heir										
Outcome	es listening, speak	king, reading, and	writing skil	ls.													
	CO2: Learners	will acquire bette	r communic	ative ability	/.												
	CO3: The cours	se will help learne	ers improve	their social	l connectivit	y skill.											
Topics	Vocabulary																
Covered	d 1. Word Fo	ormation, Use of	Prefixes and	d Suffixes ((1)												
	2. Synony	ms, Antonyms (1)															
	3. Prefixes	and Suffixes from	m Foreign L	.anguages,	Words from	n Foreign											
	Langua	ges (1)															
	4. Abbrevi	ations and Acron	yms (1)														
	5. Technic	al Vocabulary (1)															
	Grammar																

CU	RRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	1. Identifying Common Errors in Articles and Prepositions (1)
	2. Common Errors in Noun-Pronoun Agreement and Subject-Verb Agreement
	(1)
	3. Misplaced Modifiers and Tenses (1)
	4. Redundancies and Clichés (1)
	Reading
	1. Reading and Its Importance, Techniques of Effective Reading (1)
	2. Improving Comprehension Skills, Techniques for Good Comprehension (1)
	3. Skimming and Scanning (1)
	Comprehension, Intensive and Extensive Reading (2)
	Writing
	1. Sentence Structures, Phrases and Clauses, Punctuation (2)
	2. Organising Principles of Paragraphs (2)
	3. Formal Letters, Letters of Complaint, Requisition Letters, Job Application,
	and Résumé (2)
	4. Nature and Style of Sensible Writing, Defining, Describing, Classifying,
	Providing Examples and Evidence (2)
	5. Essay Writing (2)
	6. Précis Writing (2)
	7. Report Writing (2)
	Oral Communication
	1. Listening Comprehension (4)
	2. Pronunciation, Intonation, Stress, and Rhythm (4)
	3. Communication at the Workplace (4)
	4. Everyday Conversation (4)
	5. Group Discussion (4)
	6. Interviews (4)
	7. Formal Presentations (4)
Text	Text Book:
Books,	1. English for Engineers –Sudharshana & Savitha (Cambridge UP)
and/or	Reference Books:
reference	2. English—Kulbhushan Kumar (Khanna Book Publishing)
material	3. <i>Remedial English Grammar</i> —F. T. Wood (Macmillan)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
HSC01	CO1	1			1		1		1	2	3	1	
посот	CO2	1			1		2		2	2	3	2	
	CO3				1		3		3	3	3	2	

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title of the course	Program	Tota	Credit						
Code		Core (PCR)	Lecture	Tutorial	Practical	Total				
		/ Electives	(L)	(T)	(P)	Hours				
		(PEL)	. ,	()						
MAC02	Mathematics - II	PCR	3	1	0	4	4			
F	Pre-requisites	Course Assessment methods [Continuous (CT), mid-term (MT)								
		and end assessment (EA)]								
Basic co	ncepts of set theory,	CT+MT+EA								
differer	ntial equations, and									

	RRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY									
	obability.									
Course	CO1: Learn the basic concepts of linear algebra and be able to apply the same t									
Outcomes	solve various engineering problems.									
	CO2: Understand fundamentals of ordinary differential equations and the									
	applications.									
	CO3:Acquire the theoretical knowledge of Fourier Series, Fourier & Laplace									
	transforms, and learn about their applications.									
	CO4: Learn the basic concepts of probability theory.									
Topics	Introduction to Algebraic structures: Group, subgroup, ring, subring, integr									
Covered	domain, and field.(3 L)									
	Linear Algebra: Vector spaces over field, linear dependence and independence									
	vectors, linear span of a set of vectors, basis and dimension of finite dimension									
	vector space, elementary row/column operations, rank of a matrix, solutions of									
	system of linear (homogeneous and non-homogeneous) equations, eigenvalues ar									
	eigenvectors, characteristic polynomials, Cayley-Hamilton theorem (without proof									
	Diagonalization of matrices. (15 L)									
	Ordinary Differential Equations (ODE): Review of first order ODE, Picard									
	theorem (Statement Only), ODE of first order and of the first degree (exact ODI									
	rules for finding integrating factors), ODE of first order and of the higher degree									
	(ODE solvable for x, solvable for y; Clairaut's equation, singular solution									
	homogeneous and non-homogeneous linear ODE with constant coefficients ar									
	variable coefficients (Euler-Cauchy type), linear dependence of solutions, Wronskia									
	determinant, Solution of simultaneous ODEs $(dx/P = dy/Q = dz/R; dx/dt)$									
	ax + by, $dy/dt = cx + dy$), properties of nonlinear ODEs, phase plane analysis									
	(18									
	Fourier series: Piecewise smooth and periodic functions, Fourier series of a function									
	in an interval, Dirichlet conditions, Convergence of Fourier series, Fourier sine ar									
	cosine series, Complex form of Fourier series. (4 L)									
	Fourier Transforms: Fourier Integral Theorem (statement only), Different forms									
	Fourier Integrals, Fourier Transform and its inversion formula, Properties of Fourier									
	Transform, Convolution. (7 L)									
	Laplace Transforms: Laplace transforms and its Properties, Inverse Laplace									
	transforms, Convolution theorem, Applications to ODE. (4 L)									
	Probability: Random variables and probability distributions (discrete ar									
	continuous), Binomial, Poisson, Uniform and Normal distributions.(5 L)									
Text Books,	Text Books:									
and/or	1. Kreyszig, E., Advanced Engineering Mathematics: 10 th edition, Wiley Ind									
reference	Edition (2010).									
material	 Strang, G., Linear algebra and its applications (4th Edition), Thomson (2006). 									
material	3. Murray, D.A., Introductory Course in Differential Equations, Khosla Publishir									
	House (2021).									
	 Debnath, L., Integral Transforms and Their Applications, CRC Press (1995). 									
	5. Baisnab, A.P., Jas, M., Elements of Probability and Statistics, McGraw H									
	Education (2017).									
	Reference Books:									
	1. Kumaresan, S., Linear algebra - A Geometric approach, Chaukhamba									
	Auriyantaliya (2017).									
	2. Ross, S.L., Differential Equations, 3 rd Edition, Wiley Student Edition (2017).									
	3. Shivamoggi, A., Integral Transforms for Engineers, PHI (2003).									
	4. Grinstead, C.M., Snell, J.L., Introduction to probability, American Mathematical									
	Society (2012).									

Mapping of COs (Cours	se Outcomes) and POs	(Programme Outcomes)
-----------------------	----------------------	----------------------

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	3	2	1	2	-	2	-	-	-	1	2
MAC02	CO2	3	3	2	2	2	-	2	-	-	1	-	2
WACUZ	CO3	3	3	2	2	3	1	1	-	1	1	1	2
	CO4	3	2	1	3	2	1	1	1	1	-	-	2

Correlation levels 1, 2 or 3 as defined below:

Title of the course	Program	1010				Credit				
	Core (PCR) Lecture Tutorial Practical Total									
	/ Electives									
		(L)	(T)	(P)	Hours					
Data Otrucatura and	(PEL)	0	4	0	0	0				
Data Structure and	PCR	2	1	0	3	3				
						()				
e-requisites										
		and ei								
<u> </u>										
	•		•		ata type	s, data				
structures, algorithm	is and time com	nplexity and	alysis of alg	gorithms.						
CO2: Implementatio	n of different al	bstract dat	a types (ar	ray, linked l	ist, stack,	queue,				
tree, graph).										
CO3: Implementation	on of different s	sorting and	searching	techniques	along w	ith their				
performance evalua	tion.	-	-		-					
CO4: Analysis of the	e suitability/com	npatibility o	f different o	data structu	res based	d on the				
types of applications	S.									
, i i i i i i i i i i i i i i i i i i i		lgorithms f	or real-life	applications	5.					
						atic and				
5		•		•						
						, ,				
			0	()	rv repres	entation				
	•			•	• •					
	•				•					
	•									
-		perations	on polynoi	mais, spars						
		d non onor	otiona on a	tooko Arro	、	6L)				
	•				<i>,</i> ,					
	lation of postfil	• • • •	-	stack, Conv	ersion of	infix to				
				rcular que	ue, Link	ked list				
			· · ·							
-										
memory: linked repr	esentation, arra	ay represe	ntation, Bir	nary tree tra	versal (P	reorder,				
Searching Algorith	ms: Linear sea	irch and bii	nary search	า.	(2L)					
Sorting Algorithms:	Selection sort, I	nsertion so	ort, Quick s	ort, and Me	rge sort.	(5L)				
	Algorithms e-requisites puter Programming) CO1: Understandin structures, algorithm CO2: Implementatio tree, graph). CO3: Implementatio performance evalua CO4: Analysis of the types of applications CO5: Design and de Introduction: Abstr dynamic memory a algorithms, Asympt Impact of data struct Array: Array as an (row major and colut Linked list: Linked list, Linked list versu and circular linked deletion (in differen linked list: Represe Array vs. Linked List Stack: Stack as an of stack, Linked list Function call, Evalu postfix using stack. Queue: Queue as a of queue, Limitati implementation of queue, Starty memory: linked repr Inorder and Postord Searching Algorith	Algorithmse-requisitesCourse Assesputer Programming)CO1: Understanding the fundam structures, algorithms and time com CO2: Implementation of different al tree, graph).CO3: Implementation of different al tree, graph).CO3: Implementation of different al tree, graph).CO3: Implementation of different al tree, graph).CO4: Analysis of the suitability/com types of applications.CO5: Design and development of al Introduction: Abstract Data Type dynamic memory allocation, Algor algorithms, Asymptotic notations: Impact of data structure on the perf Array: Array as an ADT, Single an (row major and column major) of ar Linked list: Linked list as an ADT list, Linked list versus array, Types and circular linked list, Operation deletion (in different positions), Co linked list: Representations and o Array vs. Linked List.Stack: Stack as an ADT, Push and of stack, Linked list implementati Function call, Evaluation of postfit postfit using stack.Queue: Queue as an ADT, Enqueu of queue, Limitation of array implementation of queue, Priority q Binary Tree: Binary Tree, Definition memory: linked representation, array Inorder and Postorder), Binary sear Searching Algorithms: Linear sear	Algorithms e-requisites Course Assessment merand enputer Programming) CO1: Understanding the fundamental correstructures, algorithms and time complexity and CO2: Implementation of different abstract data tree, graph). CO3: Implementation of different sorting and performance evaluation. CO4: Analysis of the suitability/compatibility of types of applications. CO5: Design and development of algorithms for algorithms, Asymptotic notations: Big Oh, I Impact of data structure on the performance of Array: Array as an ADT, Single and multi-dim (row major and column major) of array, Addreet Linked list: Linked list as an ADT, Memory list, Linked list versus array, Types of linked I and circular linked list, Operations on linke deletion (in different positions), Concatenation Inked list: Representations and operations of stack, Linked list implementation of stack stack as an ADT, Fush and pop oper of stack, Linked list implementation of stack and circular structure of array implementation of stack array tree: Binary Tree, Definition and program of array implementation of array implementimplementation of array implementation of array implementimplemen	Algorithms Course Assessment methods [Conand end assessment puter Programming) CA+ MT + C01: Understanding the fundamental concepts of structures, algorithms and time complexity analysis of algorithms, algorithms and time complexity analysis of algorithms for evaluation. C02: Implementation of different abstract data types (art ree, graph). C03: Implementation. C04: Analysis of the suitability/compatibility of different of types of applications. C05: Design and development of algorithms for real-life Introduction: Abstract Data Type (ADT), Data Struct dynamic memory allocation, Algorithm, Analysis of tim algorithms, Asymptotic notations: Big Oh, Big Omega Impact of data structure on the performance of an algorit Array: Array as an ADT, Single and multi-dimensional a (row major and column major) of array, Address calculation and circular linked list. Unked list as an ADT, Memory allocation allist, Linked list versus array, Types of linked list: createdeletion (in different positions), Concatenation, Search linked list: Representations and operations on polynor Array vs. Linked List. Stack: Stack as an ADT, Push and pop operations on s of stack, Linked list implementation of array implementation, Ci implementation of queue, Priority queue. (4L) Gueue: Queue as an ADT, Enqueue and dequeue oper of queue, Limitation of array im	Algorithms e-requisites Course Assessment methods [Continuous (CT and end assessment (EA)] iputer Programming) CA+ MT + ET CO1: Understanding the fundamental concepts of abstract d structures, algorithms and time complexity analysis of algorithms. CO2: Implementation of different abstract data types (array, linked I tree, graph). CO3: Implementation of different sorting and searching techniques performance evaluation. CO4: Analysis of the suitability/compatibility of different data structu types of applications. CO5: Design and development of algorithms for real-life applications Introduction: Abstract Data Type (ADT), Data Structures, Concol dynamic memory allocation, Algorithm, Analysis of time and spa algorithms, Asymptotic notations: Big Oh, Big Omega and Big Impact of data structure on the performance of an algorithm. (6L) Array: Array as an ADT, Single and multi-dimensional array, Memo (row major and column major) of array, Address calculation for array Linked list: Linked list as an ADT, Memory allocation and dealloc list, Linked list versus array, Types of linked list: singly linked list, and circular linked list, Operations on linked list: creation, displa deletion (in different positions), Concatenation, Searching, Sorting linked list: Representations and operations on stacks, Arra of stack, Linked List Stack: Stack as an ADT, Push and pop operations on stacks, Arra of stack, Linked list implementation of stack, Applications of s Function call, Evaluation of postfix expression using stack, Conv postfix using stack. Gueue: Queue as an ADT, Enqueue and dequeue operations, Arrr	Algorithms e-requisites Course Assessment methods [Continuous (CT), mid-ter and end assessment (EA)] iputer Programming) CA+ MT + ET CO1: Understanding the fundamental concepts of abstract data types structures, algorithms and time complexity analysis of algorithms. CO2: Implementation of different abstract data types (array, linked list, stack, tree, graph). CO3: Implementation of different sorting and searching techniques along w performance evaluation. CO4: Analysis of the suitability/compatibility of different data structures based types of applications. CO5: Design and development of algorithms for real-life applications. Introduction: Abstract Data Type (ADT), Data Structures, Concept of stat dynamic memory allocation, Algorithm, Analysis of time and space compaligorithms, Asymptotic notations: Big Oh, Big Omega and Big Theta not Impact of data structure on the performance of an algorithm. (6L) Array: Array as an ADT, Single and multi-dimensional array, Memory repress (row major and column major) of array, Address calculation for array elements: Linked list: Linked list, Operations on linked list: creation, display, insert deletion (in different positions), Concatenation, Searching, Sorting, Applica linked list: Representations and operations on polynomials, sparse matrice Array vs. Linked List. Stack: Stack as an ADT, Push and pop operations on stacks, Array implem of stack, Linked list implementation of stack, Applications of stack: Re Function				

CUI	RRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	Graphs Algorithms: Graph representation using Adjacency matrix and Adjacence list, Breadth First Search and Depth First Search algorithms. (4L)
Text Books,	Text Books:
and/or reference	 R. F. Gilberg and B. A. Forouzan, "Data Structures: A pseudocode approac with C", 2nd Edition, CENGAGE Learning.
material	 A. V. Aho, J. D. Ullman and J. E. Hopcroft, "Data Structures and Algorithms Addition Wesley.
	 Lipschutz, "Data Structures (Schaum's Outline Series)", Tata Mcgraw Hill. E. Horowitz, S. Sahni, S. Anderson-Freed, "Fundamentals of Data Structures i C", Universities Press; Second edition (2008).
	Reference Books:
	 Y. Langsam, M. J. Augenstein and A. N. Tanenbaum, "Data Structures using and C++", Pearson, 2006.
	 Knuth, Donald E. The Art of Computer Programming. 3rd ed. Vols 1&2 Reading, MA: Addison-Wesley, 1997. ISBN: 0201896834. ISBN: 0201896842 ISBN: 0201896850.
	 Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley 2005 ISBN-13 978-0321295354.

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	-	1	1	1	-	-	-	-	-	-	-
	CO2	3	2	1	2	2	-	-	-	-	-	-	1
CSC02	CO3	3	2	1	2	2	-	-	-	-	-	-	1
	CO4	3	3	2	3	3	-	-	-	-	-	-	1
	CO5	3	3	3	3	3	-	-	-	-	-	-	2

Correlation levels 1, 2 or 3 as defined below:

Course	Titl	e of the course	Progr	am Core	Total	Number	of contact h	nours	Credit				
Code			(PCR)	/ Electives	Lectur	Tutori	Practic	Total					
			(PEL)	e (L)	al (T)	al (P)	Hours					
XEC02	Ba	asic Electrical	F	PCR	3	0	0	3	3				
		d Electronics											
		Engineering											
	Р	re-requisites		Course Assessment methods [Continuous (CT), mid-									
((, , , ,))					term (MT)		assessme	nt (EA)]					
(10+2) le	evel n	nathematics and	physics			CT+M	T+EA						
Cours	se	CO1: Learn the	fundam	entals of ele	ectric circu	its and ar	alyze the c	ircuits usi	ng laws				
Outcon	nes	and network the											
		CO2: Gain the				circuits,	electroma	gnetism a	and the				
		basics of gener		•	•								
		CO3: Understa			v .			C circuits					
		CO4: Understa							,				
		CO5: Analyze t	•						circuits.				
Tonia		CO6: Evaluate					<u> </u>		Ohm'a				
Topic Cover		1. Introduction											
Cover	eu	laws, Kirchl		s, muepend		ependen	i sources, F	analysis 0	simple				
		```	circuits. (4 L) 2. Network theorems (DC): Superposition Theorem, Thevenin's Theoren										
			Norton's Theorem, Maximum Power Transfer Theorem. (5 L)										
		3. Magnetic c					· · ·	anetic in	duction				
		Self and mu						•					
L								_/					

CUR	RICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	4. Generation of alternating voltage and current, E.M.F. equation, Average and R.M.S. value, Phase and phase difference, Phasor representation of alternating quantity, Behaviour of AC circuits, Resonance in series and parallel R-L-C circuits. (6 L)
	5. Poly-phase system, Advantages of 3-phase system, Generation of 3-phase voltages, Voltage, current and power in a star and delta connected systems, 3-phase balanced and unbalanced circuits. (3 L)
	6. Semiconductor Devices: Construction, working and V-I characteristics of diode, Zener diode, Zener diode as a voltage regulator, LED. (6 L)
	<ul> <li>7. Transistors: Introduction to BJT, FET, MOSFET; CMOS, working principle, and V-I characteristics of Transistors, biasing of BJT circuits-fixed bias, emitter bias, feedback bias, voltage divider bias, transistor as an amplifier. (8 L)</li> </ul>
	<ol> <li>Operational amplifier:Introduction, applications: inverting, non-inverting amplifier, unity follower, integrator, differentiator, summing circuit.(4 L)</li> <li>Introduction of logic gates, memory: ROM, RAM. (3 L)</li> </ol>
Text Books,	TEXT BOOKS
and/or	1. Electrical & Electronic Technology by Hughes, Pearson Education India.
reference material	2. Introduction Electronic Devices & Circuit Theory, 11/e, 2012, Pearson: Boylestad & Nashelsky.
	3. Electronics: Fundamentals and Applications By D. Chattopadhyay, P. C. Rakshit; New Age Int. Publication.
	REFERENCE BOOKS
	1. Advanced Electrical Technology by H. Cotton, Reem Publication Pvt. Ltd.
	2. Electrical Engineering fundamentals by Vincent Deltoro, Pearson Edu. India.
	3. The Art of Electronics 3e, by Paul Horowitz, Winfield Hill.
	4. Electronics - Circuits and Systems, Fourth Edition by Owen Bishop.
	5. Electronics Fundamentals: Circuits, Devices & Applications (8e) by Thomas L. Floyd & David M. Buchla.

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	3	3	3	3	3	1	1	1	1	1	1	1
	CO2	3	3	3	3	2	1	2	1	1	1	1	1
XEC02	CO3	3	3	3	3	3	2	2	1	1	1	1	1
ALCOZ	CO4	2	3	2	2	-	1	-	-	-	-	-	1
	CO5	3	2	1	2	2	1	-	-	2	-	-	1
	CO6	3	2	2	2	3	-	-	-	2	-	-	1

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title of the course	Program Core	Tota	I Number c	of contact ho	ours	Credit		
Code		(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
CSS51	Computer Programming Laboratory	PCR	0	0	З	3	2		
Pr	e-requisites	Course Assessment methods [Continuous (CT) and end							
			assessment (EA)]						
	NIL			CT+EA					
Course Outcome		<b>D1</b> : To understand the principle of operators, loops and branching statements. <b>D2</b> : Implementation of function, recursion, arrays, and pointers based several							

CUP	RRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	types of assignments.
	<b>CO3</b> : To detail out the operations of strings.
	<ul><li>CO4: To understand structure and union.</li><li>CO5: Application of C-programming to solve various types of problems.</li></ul>
Topics	List of Experiments:
Covered	1. Programs on expression evaluation.
Covered	2. Programs on conditional statements and branching
	3. Programs on iterations/loops.
	4. Applications of Arrays
	5. Programs on basics of functions and pointers.
	6. Programs on string using array and pointers.
	7. Programs on recursion.
	8. Programs on structures, union.
	9. Programs on File Operations.
	10. Case Studies.
Text Books,	Text Books:
and/or	1. Y. Kanetkar, "Let Us C", BPB Publications, Sixteenth edition, 2017.
reference	2. B. S. Gottfried, "Programming with C", McGraw Hill Education, 4 th Ed., 2018.
material	3. E. Balagurusamy, "Computing Fundamentals and C Programming", McGraw Hill
	Education; Second edition, 2017.
	Reference Books:
	1. P. Dey and M. Ghosh, "Computer fundamentals and programming in C", Oxford press, 2013.
	2. R. Thareja, "Computer fundamentals and programming in C", Oxford press,
	2013.
	3. Schaum's Outline, Programming with C.

Course	COs	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12
	CO1	3	3	2	-	-	2	-	-	-	-	-	-
	CO2	2	2	1	-	-	1	-	-	-	-	-	-
CSS51	CO3	3	2	2	-	-	1	-	-	-	-	-	-
	CO4	2	3	2	-	-	2	1	-	-	-	-	-
	CO5	3	3	3	-	1	2	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title of the	Program	Total Num	nber of conta	act hours		Credit				
Code	course	Core	Lecture	Tutorial	Practical	Total					
		(PCR) /	(L)	(T)	(P)	Hours					
		Electives		( )	( )						
		(PEL)									
PHS51	PHS51 Engineering		0	0	2	2	1				
	Physics										
	Laboratory										
Pre	e-requisites	Course Assessment methods [Continuous evaluation (CE) and end									
				assessmer	nt (EA)]						
	NIL			CE+E	A						
Course	CO1: To realize	e and apply di	ifferent tech	niques for m	easuring refr	active ind	ices of				
Outcome	s different mate	rials.		-	-						
	CO2: To realize	e different typ	es of wavefo	orms in elec	trical signals	using CR	0.				

CUF	RRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	CO3: To understand charging and discharging mechanism of a capacitor.
	<b>CO4</b> : To understand interference, diffraction and polarization related optical
	phenomena.
	<b>CO5</b> : To acquire basic knowledge of light propagation through fibers.
Topics	1. Find the refractive index of a liquid by a travelling microscope.
Covered	2. Determine the refractive index of the material of prism using spectrometer.
	3. Determination of amplitude and frequency of electrical signals by oscilloscope.
	4. To study the characteristics of RC circuits.
	5. To study Brewster's law/Malus' law using laser light.
	6. To study the diffraction of light by a grating.
	7. To study the interference of light by Newton's ring apparatus.
	8. To determine numerical aperture of optical fiber.
	9. Determination of Planck constant.
Text Books	SUGGESTED BOOKS:
and/or	1) A Text Book on Practical Physics – K. G. Mazumdar and B. Ghosh
reference	2) Practical Physics – Worsnop and Flint
material	

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	1	-	-	-	-	-	2	1	-	1
	CO2	3	2	1	-	-	1	-	-	2	1	-	1
PHS51	CO3	3	1	-	-	-	-	-	-	2	1	-	1
	CO4	3	2	-	1	-	1	1	-	2	1	-	1
	CO5	3	2	1	-	1	1	1	-	2	1	-	1

## Correlation levels 1, 2 or 3 as defined below:

Course	Tit	le of the	Program Core	Tota	I Number o	of contact ho	ours	Credit					
Code	C	ourse	(PCR) /	Lecture	Tutorial	Practical	Total						
			Electives	(L)	(T)	(P)	Hours						
			(PEL)			<b>、</b> ,							
CYS51	Eng	ineering	PCR	0	0	2	2	1					
	Ch	emistry											
	Lab	poratory											
Pr	e-requis	sites	Course Assess	ment meth	ods [Contir	nuous evalua	tion (CT) a	and end					
				assessment (EA)]									
	NIL				CT+EA								
Course	CC	<b>D1</b> : To learn basic analytical techniques useful for engineering applications.											
Outcome	es CC	O2: Synthesis and characterization methods of few organic, inorganic and											
	pol	ymer compo	unds of industrial	importance	э.	-	-						
	CC	3: Learn chr	omatographic sep	aration me	thods.								
	CC	94: Application	ns of spectroscop	ic measure	ements.								
Topics	1.	Experimer	its based on pH	metry: De	termination	of dissoci	ation con	istant of					
Covered	b	weak acids	s by pH meter.										
	2.	Experimer	its based on con	ductivity m	leasuremei	nt: Determii	nation of	amount					
		of HCI by o	conductometric tit	ration with	NaOH.								
	3.		of metal ion: Esti										
	4.	Estimation	of metal ion: Dete	erm. of tota	l hardness	of water by	EDTA tit	ration.					
	5.	Synthesis	and characterization	ation of in	organic co	omplexes:	e. g. Mr	n(acac) ₃ ,					
		Fe(acac) ₃ ,	cis-bis(glycinato)	copper(II) i	monohydra	ite and their	r characte	erization					
		by m. p., F	T-IR etc.										
	6.	Synthesis	and cha	racterizatic	on of	organic	com	pounds:					

CUR	RICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	<ul> <li>e.g.Dibenzylideneacetone.</li> <li>7. Synthesis of polymer: polymethylmethacrylate</li> <li>8. Verification of Beer-Lambert's law and determination of amount of iron present in a supplied solution.</li> <li>9. Chromatography: Separation of two amino acids by paper chromatography</li> <li>10. Determination of saponification value of fat/ vegetable oil</li> </ul>
Text Books and/or reference material	Suggested Text Books:         1. Vogel's Quantitative Chemical Analysis (6th Edition) Prentice Hall         2. Advanced Physical Chemistry Experiments: by Gurtu&Gurtu         3. Comprehensive Practical Organic Chemistry: Preparative and Qualitative         Analysis by V. K. Ahluwalia and S. Dhingra         Suggested Reference Books:         1. Practical Chemistry by R.C. Bhattacharya         2. Selected experiments in Physical Chemistry by N. G. Mukherjee

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12
	CO1	2	1	-	1	-	-	-	-	-	-	-	-
CYS51	CO2	-	1	-	1	1	2	-	-	-	-	-	-
C1351	CO3	2	-	-	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	1	1	-	-	-	-	-	-	-

### Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Tota	l Number o	of contact ho	ours	Credit					
Code		(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P)	Hours						
		(PEL)										
XES51	Engineering Graphics	PCR	1	0	3	4	2.5					
P	re-requisites	Course As		-	ontinuous (	CT) and e	end					
		assessment (EA)]										
	NIL	CT+EA										
Course		mental visualization										
Outcome		CO2: Theoretical knowledge of orthographic projection to solve problems of										
		one/two/three dimensional objects										
		CO3: Able to read/interpret industrial drawing and to communicate with relevant										
	people		·			1.4						
Topics	•	nguage of commur			•		•					
Covered	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	construction of geo	0		0							
		nd use of scales;										
		s of conic section			volutes and	differen	t loci of					
		quations for drawin			of orthoard	nhia nr	aiaatian					
		cometry: necessity		•	•	•	•					
		vertical referent pints and lines situa										
		es of lines. First ar										
		views from top, front and left (or right); true length and true inclination of lines with planes of projections; primary auxiliary projection of points, lines and planes;										
		nd auxiliary elevation					piùnoo,					
		2		ms. cubes.	cvlinders.	ovramids	. cones.					
		Projection of simple regular solids, viz. prisms, cubes, cylinders, pyramids, cones, tetrahedrons, spheres, hemi-spheres etc. [6 L]										

	Section of solids; section by perpendicular planes; sectional views; true shapes of sections. [6 L] Dimensional techniques; international and national standards (ISO and BIS). [3 L] Freehand graphics. [3 L]
Text and/or	1)Engineering Drawing and Graphics – K. Venugopal
reference	2)Engineering Drawing – N. D. Bhat
material	3) Practical Geometry and Engineering Graphics – W. Abbott

## Mapping of COs (Course Outcomes) and POs (Programme Outcomes)

Course	COs	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12
	CO1	1	-	-	-	-	-	-	-	-	-	-	-
XES51	CO2	1	1	-	-	-	-	-	-	-	-	-	-
	CO3	1	-	1	-	-	-	-	-	-	-	-	-

### Correlation levels 1, 2 or 3 as defined below:

Course	Tit	le of the	Program Core	Tota	I Number o	of contact ho	ours	Credit					
Code	С	ourse	(PCR) /	Lecture	Tutorial	Practical	Total						
			Electives	(L)	(T)	(P)	Hours						
			(PEL)										
XES52		Electrical	PCR	0	0	3	3	2					
		lectronics oratory											
Pr	e-requis		Course As	sassmant r	nethods [C	ontinuous (	CT) and e	nd					
	e requis		000130713		sessment (	•							
	NIL			0.0	CT+EA	(=, ,)]							
Course	CC	01: Learn to a	arn to analyse the electric circuits using network theorems.										
Outcome			derstand the characteristics of fluorescent lamp and compact fluoresc										
	lan					-							
			he behaviour of si										
		<b>CO4</b> : Understand the application of electronics components, diode circuits											
		rectifier circuits and voltage regulators.											
		<b>CO5</b> : Evaluate and study the performance of the transistor as a switch. <b>CO6</b> : Create inverting and non-inverting amplifier circuits using Op-Amp.											
Labs			of the network the				-Amp.						
Conducte			e characteristics of			pact fluores	cent lamr	)					
Conduct			the three phase s										
			e series and parall										
	5.	Identify and	understand the u	se of differ	ent electro	nic and elec	trical						
			, various electroni	•									
	6.		If-wave and full-wa	· •	,	vith and with	out capa	citor					
	_		Zener diode as a				<b>-</b> ,						
			erformance of a tr										
Text Boo		EXT BOOK	of Inverting and N	ion-invertin	ig ampliner	using Op-A	inp.						
and/or			of Laboratory Expe	eriments in	Electronic	s and Electr	ical Engir	neerina					
reference			ngeru , J. M. Chu				.cu Engli	Joonny					
materia	-		s Manual for use v			les (Engine	ering						
			es and the Trades					s, et al.					
		EFERENCE	BOOKS										
	1.		Courses in Electr										
		P. K. Kharl	banda, S. B. Bodh	ke, S. D. N	laik, D. J. D	Dahigaonkar	(S. Char	nd					

Publications).

- 2. The Art of Electronics 3e, by Paul Horowitz, Winfield Hill.
- 3. Electronic Principles, by Albert Paul Malvino Dr. and David J. Bate.

### Mapping of COs (Course Outcomes) and POs (Programme Outcomes)

Course	COs	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12
	CO1	3	3	3	3	3	1	1	1	2	2	2	3
	CO2	3	3	2	3	3	3	1	1	2	2	2	3
VECCO	CO3	3	3	2	3	3	2	1	1	2	2	2	3
XES52	CO4	3	3	3	3	3	1	1	1	2	2	2	3
	CO5	3	2	1	2	2	1	-	-	2	-	-	-
	CO6	3	2	2	2	3	-	-	-	2	-	-	-

### Correlation levels 1, 2 or 3 as defined below:

Course	Title of	the course	Program	Tota	I Number o	of contact ho	ours	Credit				
Code			Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours					
CSS52	and A	otructures Igorithms oratory	PCR	0	0	3	3	2				
	Pre-requis	ites	Course As		ssessment		(CT) and	end				
	NIL		CT+EA									
Cours Outcon	nes impl CO2 their CO3 appl CO4 appr CO5	ementations f 2: Understand implementat 3: Identify, des icable for give 1: Implementa ropriate datas	tion of different s structures and pe cient algorithms f	cation prot of abstract system. entation of searching a erform effic	blems. data types stack, que and sorting iency analy	from real-lif ue, binary tr techniques /sis.	e scenari ee, and g					
Cover	ed 1. 2. 3. 4. 5. 6. 7. 8. 9.	Application o Implementati Implementati Implementati Postorder tra Implementati Implementati Implementati	f arrays using dy on and Application on of stack, and on of queue, app on of Binary tra- versal. on of binary sear on of linear sear on of different so on of graph algo	ons of linke application blications o ee, Binary rch tree an ch, binary s orting algor	ed lists. Is of stack. f queue: Pr tree trave d operatior search (rec ithms.	riority queue ersal: Preor ns on it. eursive, non-	der, Inord recursive	).				
Text Bo and/c referen materi	oks, <b>Tex</b> or 1. ice	t Books: S. Lipschutz Education; F E. Horowitz,	z, "Data Structu irst edition (2017 S. Sahni, S. And es Press; Secon	'). Ierson-Free	ed, "Fundai							

 E. Balagurusamy, "Programming in ANSI C", McGraw Hill Education India Private Limited, Seventh edition (2017).
 Reference Books:

1. B. S. Gottfried, "Programming with C", McGraw Hill Education, 4thEd. (2018).

### Mapping of COs (Course Outcomes) and POs (Programme Outcomes)

Course	COs	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	-	1	1	1	-	-	-	-	-	-	-	-
CSS52	CO2	-	1	1	3	-	-	-	-	-	-	-	-
63352	CO3	2	2	3	2	1	-	-	-	-	-	-	-
	CO4	2	2	2	1	1	-	-	-	-	-	-	-
	CO5	3	3	3	3	3	-	1	1	-	-	1	2

### Correlation levels 1, 2 or 3 as defined below:

			Program Core	Tota	urs			
Course Code	Title c cour		(PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	Credit
XXS51	Ext Acade Activ	emic	PCR	0	0	2	2	1
Pre-requis	ites	Cours	e Assessment n	nethods [C	ontinuous	(CT) and en	d assessi	ment (EA)]
NIL					CT+EA			
Course Outcomes			teraction throug ilding and self d		um of spor	ts		
Topics Covered	• • • • • • • •	Sitting Ustrasa Mudra- Laying Bhujang Chakra (Boat P Meditat Standin Pose), Wheel I Pranaya Kriya- k VONDO Introduc Of Dres Stance Punch Blocks Foot Te	ction of Yoga- S Posture / Asar ana, Janusirshas Gyana Mudra, ( Posture/ Asana- gasana (Cobra sana, Viparitkar Posture), Shavas ion-Om Chant. g Posture / Ar Ardha Chandr Posture). ama-Deep Brea (apalbhati. ction About Tae ss, Fighting Area - Ready Stance Technique- Fro - Upper Blocks, echnique- Stand ae (Forms)- Jar	has – Pac sana, Gom Chin Mudra -Pavana M Pose), ani, Ardha sana (Relaz (1L) sana-Tada asana, Pa thing, Anul kwondo- M a, Punch, E , Walking S nt Fist Pu Middle Blo ling Kick, F	dmasana, ukhasana, a.(1L) ukhtasana Eka Pada Halasana king Pose) sana (Mou adahastasa om Vilom, deaning Of Block, Kicks Stance, Fro nch, Doubl ck, Side Bl front Kick, I	Bhadrasana , Uttana Pao Salabhasa (Half Plough , Makarasan untain Pose ana, Ardha Shitali, Bhra Shitali, Bhra Taekwondo setc. Int Stance, E e Fist Punc ock, Suto et	a. dasana, S ana, Dha n Pose), N na. e), Vriksh Chakras amari.(5L) o, Korean aack Stan h, With S c.	(7L) Sarpasana anurasana Jaukasana (7L) ana (Tree ana (Hal (5L) (1L) (1L) Language (1L) ce. (2L) Stance etc (4L)

• Self Defense Technique- Self Defense from Arms, Fist and Punch.

(4L)

(2L)

(2L)

(1L)

- Sparring (Kyorugi)- One Step Sparring.
- Combination Technique- Combined Kick and Punch.
- Project Work

### Mapping of COs (Course Outcomes) and POs (Programme Outcomes)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
XXS51	CO1	-	-	-	-	-	2	-	-	2	-	-	1
XX221	CO2	-	-	-	-	-	-	-	2	3	-	-	1

### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

## THIRD SEMESTER

Course	Title of the	Program Core	Tota	I Number o	of contact ho	ours	Credit				
Code	course	(PCR)/Electives	Lecture	Tutorial	Practical	Total					
		(PEL)	(L)	(T)	(P)	Hours					
MAC331	Mathematics-III	PCR	(L) 3	1	0	4	4				
Pre	e-requisites	Course Assessment methods [Continuous (CA), mid-term (MT) and end term assessment (ET)]									
include	owledge of topics ed in MAC01 & MAC02.	CA+MT+ET									
Course	CO1: Acquire	the idea about ma	thematical	formulatio	ns of pheno	omena in	physics				
Course OutcomesCO1: Acquire the idea about mathematical formulations of phenomena in physic and engineering.CO2: To understand the common numerical methods to obtain the approxima solutions for the intractable mathematical problems.CO3: To understand the basics of complex analysis and its role in mode mathematics and applied contexts.CO4: To understand the optimization methods and algorithms developed f solving various types of optimization problems.											
Topics		ential Equations (			PDEs: Lagr	ange me	thod for				
Covered	solution of fir PDE; Homoge Complimentar PDE and car dimensional v Laplace equat <b>Numerical M</b> Forward, Back nonlinear alge methods; Tra method and m <b>Complex Ar</b> Derivative; Ar Bilinear transfi integral formu points and res <b>Optimization</b>	st order quasilinea enous and Nonhon y Function, Particu- nonical forms; Init vave equation, one tion. [14 L] <b>ethods:</b> Significar kward and Lagrang ebraic/transcenden pezoidal and Simp nodified Eular's met <b>nalysis:</b> Functions nalytic function; Ha ormation; Complex ila; Taylor's theore sidues; Cauchy's re	ar PDE; Cl nogeneous ular integra ial & Bou dimensior at digits, E ge's interpo tal equatio pson's 1/3 hods for so of comp armonic fu integratior m, Lauren sidue theo	harpit meth linear PD l; Classific ndary Valu- nal heat ec rorrs; Diffe plation form ns by Bise rule for nu- plving first of plex varia nction; Co n; Cauchy's t's theoren rem.	nod for first E with cons ation of sec ue Problem quation and erence ope nulae; Nume ection and I umerical int order differe ble, Limit, onformal tra s integral th n (Statemer [17 L]	t order n stant coel cond ordens involvi two dime rators; N erical solu Newton-F tegration; ential equa Continu unsformat eorem; C nt only); \$	onlinear ficients: er linear ng one ensional lewton's titions of aphson Euler's ations. [14 L] ity and ion and auchy's Singular				

CUR	RICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	Polytopes and Polyhedra. [2 L] <b>Linear Programming Problem (LPP):</b> Introduction; Formulation of linear programming problem (LPP); Graphical method for its solution; Standard form of LPP; Basic feasible solutions; Simplex Method for solving LPP. [9 L]
Text Books, and/or reference material	

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	2	-	2	-	-	2	2	3
CO2	1	2	1	1	-	-	3	-	2	1	-	3
CO3	3	-	-	2	-	1	2	-	2	-	-	3
CO4	3	3	3	2	-	-	1	2	1	-	2	3

Course	Title	of	the	Program	Tota	al Number o	f contact hou	irs	Credit					
Code	course	;		Core	Lecture	Tutorial	Practical	Total						
				(PCR)/Elec	(L)	(T)	(P)	Hours						
				tives (PEL)										
CYC301	State and Therm	Cherr	nical	PCR	3	1	0	4	4					
	CS	-												
Pre	e-requisit	quisites Course Assessment methods [Continuous (CA), mid-term (MT)												
					and end assessment (ET)]									
	NIL					CA+MT+E	ΞT							
Course	CO1	<b>CO1</b> : To learn the scientific development and rationale of Kinetic Theory of Gas and												
Outcomes	s its u	sefulr	iess.											
	CO2	<b>2</b> : To	und	erstandthe orig	gin of sur	face tensio	on and visc	cosity ar	nd their					
	appl	icatio	n.											
	CO3	<b>β</b> : Το ι	unders	stand the crysta	al structure a	and principle	e of X-Ray cr	ystallogra	aphy.					
	CO4	l: Fou	ndatic	oninchemical the	ermodynam	ics.								
	CO5	:Anal	yzing	effect of vari	ous experi	mental para	ameters tow	ards equ	uilibrium					
	cond	dition	of a c	hemical reaction	n/process.									
	COG	:Prov	iding	the basic know	vledge usef	ul for highe	er level study	in the	field of					
	stati	stical	andn	on-equilibrium t	thermodyna	mics.	-							

Topics Covered	Kinetic Theory of Gases and Real gases								
Covered	a. Kinetic theory of ideal gas, Concept of pressure and temperature; Collision gas molecules; Collision diameter; Collision number and mean free particular frequency of binary collisions (similar and different molecules); Rate effusion.								
	<ul> <li>b. Nature of distribution of velocities, Maxwell's distribution of speed and kinetic energy; Average velocity, root mean square velocity and most probable velocity; Principle of equipartition of energy and its application to calculate the classical limit of molar heat capacity of gases.</li> </ul>								
	<ul> <li>c. Deviation of gases from ideal behaviour; Compressibility factor; Boyl temperature; Andrew's and Amagat's plots; van der Waals equation and if features; its derivation and application in explaining real gas behaviour; Viria equation of state, Existence of critical state, Critical constants; Law of corresponding states.</li> </ul>								
	<ul> <li>d. Viscosity of gases and effect of temperature and pressure on coefficient of viscosity (qualitative treatment only). (2 L</li> <li>Liquids(4 L)</li> <li>Definition of Surface tension, its dimension and principle of its determination of using stalagmometer; Viscosity of a liquid and principle of determination of coefficient of viscosity using Ostwald viscometer; Effect of temperature of surface tension and coefficient of viscosity of a liquid (qualitative treatment only)</li> <li>Solids(6 L)</li> <li>Forms of solids, crystal systems, unit cells, Bravis lattice types, Symmetrie elements; Law of constancy of interfacial angles, Law of rational indices; Mille indices of different planes and interplanar distance, Bragg's law; Structures of NaC KCI and CsCI (qualitative treatment only); Defects in crystals; Glasses and liquid crystals.</li> </ul>								
	Chemical thermodynamics								
	Basic concepts on the 1 st law of thermodynamics: exact and inexact differential reversible and irreversible processes, heat capacity, different thermodynam relations for reversible/irreversible isothermal and adiabatic processes. Jour experiment, Internal pressure, Joule-Thomson cooling effect. Thermochemistry an adiabatic flame temperature.(6 L)								
	Second law and its elementary interpretation, Carnot's cycle and theorems Refrigeration, Concept of entropy, Clausius inequality, Carnot theorem, Gibbs an Helmholtz functions, criteria of spontaneity, Thermodynamic probability Thermodynamics equation of states; Maxwell equations in thermodynamics Concept of partial molar quantity, Chemical potential and escaping tendency Thermodynamics of ideal mixing, Clausius-Clapeyron equation and phase diagram of single component systems. (10 L)								
	<b>Chemical Equilibrium</b> (4 L) Conditions of spontaneity and equilibrium, degree of advancement and Le Chatelie principle; Van't Hoff isotherm, isobar and isochore systems. Various factor affecting the equilibrium condition.								
Text Books, and/or	<ol> <li>Physical chemistry by P. Atkins and J.de Paula</li> <li>Physical chemistry by Laidler and Meiser</li> <li>A text book of physical chemistry by K.L.Kapoor (Vol 1 and 2)</li> <li>Physical chemistry by P.C.Rakshit</li> </ol>								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	3	1	1	1	3	1	1	1	3
CO2	3	1	2	3	2	1	1	3	2	1	1	3
CO3	3	3	2	3	3	3	1	3	3	1	1	3
CO4	3	1	1	3	2	1	1	3	2	1	1	2
CO5	3	1	1	3	2	1	1	2	2	1	1	2
CO6	3	1	1	1	1	1	1	3	1	1	1	3

Course	Title of	the	Program Core	Tota	I Number o	of contact ho	ours	Credit					
Code	course		(PCR) / Electives	Lecture	Tutorial	Practical	Total						
			(PEL)	(L)	(T)	(P)	Hours						
CYC302	Atomic		PCR	3	0	0	3	3					
	Structure a												
	Chemica												
	Bonding												
Pre	-requisites	, ,											
			end assessment (ET)]										
	NIL				CA+MT+ET								
Course			w the history of dev	elopment c	of the subje	ect and und	erstand th	ne basic					
Outcomes		rinciple of quantum theory.											
			exposed with hydr										
			quantum numbers, e										
		<b>CO3:</b> To know symmetric and antisymmetric wave function and concept of spin											
		<b>O4:</b> To learn shape of molecules, electron count and VSEPR theory.											
		<b>05:</b> To know quantum mechanical treatment of VBT and MOT.											
		<b>CO6:</b> To understand the concept of hybridisation of atomic orbital and molecular											
Taniaa		properties. Genesis: Planks quantisation of energy, photoelectric effect, Compton effect, De											
Topics													
Covered	interpreta	lie wave particle duality, Heisenberg uncertainty principle, wave function, Born											
			wave equation of h	vdrogon o	tom conor	ation of va	riables o	[4 L]					
			ncipal quantum num										
			ape and size of orbita										
	numbers	, 5110		ii, uncertaii			Sation	[5 L]					
	Flectron	pro	bability density, r	adial part	radial	distribution	curve						
			, node and angular										
			e, electron cloud den					[5 L]					
			agnetic field, Zeema										
	spin.		- 3	, <b>•</b>		,		[3 L]					
		any electron atoms and ions:											
			c principle, Pauli's e	exclusion p	rinciple, H	und's rule.e	xchange	energy.					
	Aufbau p		• • •		I '	,	5	[3 L]					
	I		•										

CUR	RICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	Covalent bond:[3 L] Covalence bond: Lewis structure and octet rule, violation of octet rule. [1 L] Variation principle, one electron wave function, valence bond theory with H ₂ [2 L] Hybridisation, sigma bond, pi bond, delta bond, bond distance, bond energies, bond angle. [5 L] Directional property, shape, VSEPR. [2 L]
	Bond moment and dipole moments, hydrogen bond, inter molecular forces. [2 L] Molecular orbital theory, $H_2^+$ , binuclear(AB) [5 L]
Text Books, and/or reference material	<ol> <li>Inorganic Chemistry, Part I, R. L. Dutta New Book Stall</li> <li>Fundamental concept of Inorganic Chemistry, vol I and II, Asim K. Das, CBS publishers &amp; distributors</li> <li>Inorganic Chemistry, Huheey, Keiter, Keiter, Medhi, Pearson education</li> <li>Inorganic chemistry, Shriver &amp; Atkins, Oxford</li> <li>Concept and models of inorganic Chemistry, Douglas, Mcdeniel, Alexander, Wiley India Pvt. Ltd.</li> </ol>

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	1	1	1	2	1	2	2	1
CO2	3	2	3	3		1	1	2	1	2	2	1
CO3	3	2	3	3		1		2	1	2	2	1
CO4	3	2	3	3		1	1	2	1	2	2	1
CO5	3	2	3	3		1	1	2	1	2	2	1
CO6	3	2	3	3		1	1	2	1	1	2	1

Course Code	Title of the course	Program Core (PCR) /	Tota	l Number o	of contact ho	ours	Credit				
		Electives	Lecture	Tutorial	Practical	Total					
		(PEL)	(L)	(T)	(P)	Hours					
CYC 303	Stereochemistry and Basic Principle of Organic Chemistry	PCR	3	0	0	0	0				
P	re-requisites	Course Assessment methods [Continuous (CA), mid-term (MT) and end assessment (ET)]									
	NIL		CA+MT+ET								
Course	CO1: To Learn	basic concept of s	tereochem	nistry							
Outcome	s CO2: To Learn	CO2: To Learn molecular symmetry, designation of chiral centre, axis and heli									
		CO3: To Learn selectivity issues in organic reactions									
	CO4: To Learn	CO4: To Learn conformational analysis									
	CO5: To Learn	stereo-electronic e	effects on s	stability and	d rate of rea	ctions					

CUR	RICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMIS	STRY
Topics Covered	Basic concept of stereochemistry: Isomerism; asymmetric and centres /molecules, Conformation and configurational nomenclature.	dissymmetric [8 L]
	Molecular symmetry: chirality, chiral axis, helicity.	[8 L]
	Regio-, chemo- and stereoselective reactions.	[8 L]
	Conformational analysis of acyclic and cyclic compounds. [6 L]	
	Stereo-electronic effects:Electronic effects on stability and rat reactions: inductive, electromeric, mesomeric, hyperconjugative effe of resonance. Steric effects: steric acceleration, steric retardation, steric inhibition of	ects, concepts f resonance.
Text Books, and/or reference material	<ol> <li>Basic stereochemistry of organic molecules: S. Sengupta</li> <li>Stereochemistry: Conformation and Mechanism; P.S. Kalsi</li> <li>Organic Chemistry: Morrison and Boyd</li> <li>Organic stereochemistry: D. Nasipuri</li> <li>Stereochemistry of Carbon Compounds: Ernest L. Eliel.</li> <li>Organic Chemistry: Sachin Kumar Ghosh</li> </ol>	[10 L]

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO1 1	PO12
CO1	3	2	3	3	1	2	2	3	3	1	3	2
CO2	3	3	3	3	1	2	3	3	3	1	3	2
CO3	3	3	3	3	3	3	2	3	3	3	3	3
CO4	3	3	3	3	2	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3

Course	Title of the course	Program Core	Total Nu	mber of cor	ntact hours		Credit			
Code		(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
CYS351	Qualitative Analysis of	PCR	0	0	3	3	2			
	Organic Samples									
Pi	re-requisites	Course Assessment methods								
	NIL	Continuous assessment (CA)+ end assessment (EA)								
Course OutcomesCO1: A basic idea about the physical methods like; M.P., B.P., distil crystallization for analysis of organic compounds. CO2: An idea about the uses of reagents and solvents for analysis compounds CO3: Detection and identification of special elements and functional organic samples. CO4: Learn about the uses of proper solvent for purification of organic com CO5: Learn about minimum use of sample for analyses.										

Topics	MixedMelting Point Determination:							
Covered	Urea – Cinnamic acid mixture of various compositions (1:4, 1:1, 4:1)							
	Distillation:							
	Simple distillation of ethanol-water mixture using water condenser							
	Distillation of nitrobenzene and aniline using air condenser							
	Purification of common organic solvents by distillation; methanol, petroleum ethe THF, chloroform etc.							
	Crystallization:							
	Concept of induced crystallization, Phthalic acid from hot water (using fluted filter paper and stem less funnel), Acetanilide from boiling water, Naphthalene from ethanol, Benzoic acid from water.							
	Decolourization and Crystallization:							
	Decolourization of brown sugar (sucrose) with animal charcoal using gravi filtration. Crystallization and decolourization of impure naphthalene (100 g naphthalene mixed with 0.3 g of Congo red using 1 g decolourizing carbon) fro ethanol.							
	Sublimation (Simple and vacuum):							
	Camphor, Naphthalene, phthalic acid and Succinic acid.							
	Identification of some common organic molecules:							
	Methanol, ethanol, acetone, glycerol, aniline, nitrobenzene, benzyl alcohol, form acid, acetic acid, succinic acid, tartaric acid, salicylic acid, glucose, sucros resorcinol.							
	Identification of unknown organic compound:							
	Identification of an organic compound through the functional group analysi determination of melting point and preparation of suitable derivatives.							
Text Books,								
and/or	(ii) Advanced practical chemistry by S. C. Das							
reference	(iii) An Advanced Course in Practical Chemistry by A. K. Nad, B. Mahapatra &							
material	Ghoshal							

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	2	2	2	3	2	2	3	3	2	3	2
CO2	2	3	3	3	2	2	3	2	3	3	2	2
CO3	3	3	3	2	1	3	2	3	2	2	1	2
CO4	2	2	1	3	2	2	3	2	1	2	3	2
CO5	3	2	2	1	3	2	2	3	2	1	2	3

Course	Ti	tle of the	Program Core	Tota	Total Number of contact hours						
Code		course	(PCR) / Electives	Lecture	Tutorial	Practical	Total				
		(PEL)		(L)	(T)	(P)	Hours				
PHC334	Ρ	hysics II PCR		3	0	0	3	3			
Pre	e-requ	uisites	Course Assess	Course Assessment methods [Continuous (CA), mid-term (MT) and							
			end assessmen	end assessment (ET)]							
	NII	-		CA+MT+ET							
Course		CO1: Abl	e to understand the	e principles	of classica	al mechanic	s apply t	to solve			
Outcomes	5	classical motion.	and Hamilto	n's equa	tions of						
		CO2: Able to apply fundamental knowledge of different co-ordinate systems									

CURR	ICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	describe the spatial variations of the physical quantities dealt in electromagnetic
	field theory.
	CO3: Able to explain fundamental laws governing electromagnetic fields and
	evaluate the physical quantities of electromagnetic fields (Field intensity, Flux
	density etc.).
	<b>CO4</b> : Gain an integrative overview of electromagnetic waves, its propagation in different media and different phenomena related to electromagnetic wave
	propagation.
Topics	Classical Mechanics:
Covered	D'Alembert's principle, Lagrange's equation of motion, Some applications of
	Lagrange's equation of motion, Hamilton's equation of motion, Some applications
	of Hamilton's equation of motion and its physical significance. [6L]
	Vector Analysis:
	Vector field, Divergence and curl of a vector field and their physical significance,
	Gauss's divergence theorem, Stoke's theorem, Green's theorem, Different
	coordinate systems (Cartesian, spherical and cylindrical). [8L]
	Electrostatics
	Divergence of electrostatic field, Gauss's Law of electrostatics and its applications, Laplace's equation, Poisson's equation, Continuity equation, Capacitor. [6L]
	<b>Magnetostatics</b> : Curl of magnetic field, Ampere's Circuital law and its applications, Curl of electric field and divergence of magnetic field, Concepts of scalar and vector potentials. [7L]
	Electromagnetic Induction and Maxwell's Equation:
	Faraday's law of electromagnetic induction, Concept of displacement current, Maxwell's equation in free space, Poynting Theorem. Some examples. [7L]
	Alternating Current:
	L-R, C-R, L-C-R series and parallel circuits, Q- factor, Resonance, Maximum
	power transfer theorem, Voltage magnification factor, Band width of circuit. [8L]
Text Books,	TEXT BOOK:
and/or reference	1. Vector Analysis: Murray Spiegel (Author), Seymour Lipschutz, Dennis Spellman
material	<ol> <li>Introduction to Electrodynamics: David J. Griffith</li> <li>Introduction to Classical Mechanics: R. G. Takwale &amp; P. S. Puranik</li> </ol>
material	REFERENCE BOOKS:
	1.Classical Mechanics: N. C. Rana & P. S. Joag
	2.Classical Mechanics: H. Goldstein
	3. Electricity and Magnetism: D. Chattopadhyay & P. C. Rakshit

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	-	1	1	-	1	1	-	1
CO2	3	2	-	1	1	-	-	-	2	1	-	1
CO3	3	2	1	1	-	1	-	-	1	1	-	1
CO4	3	2	1	1	-	1	1	-	2	1	-	1

Course	Title of the	Program Core	Tota	Number o	f contact ho	urs	Credit				
Code	course	(PCR) /	Lecture(	Tutorial	Practical	Total					
		Electives (PEL)	L)	(T)	(P)	Hours					
PHS	Physics II	PCR	0	0	3	3	2				
384	Laboratory										
Pr	e-requisites	Course Asse	Course Assessment methods: [Continuous evaluation (CE) and								
			end assessment (EA)]								
	PHS51			CE+EA							
Course	CO1: To realize	e and apply differe	nt technique	es for meas	suring reson	ance, Q-	factor of				
Outcomes											
		rmine the Self-In	ductance, I	Mutual Ind	uctance an	nd verific	ation of				
	Faraday's law.										
		nine the thermoele									
		the concepts to				ent of the	earth's				
	•	using a vibrational a ate the loss of a ma		0		ouromon	+				
Topics											
Covered	,		s L-C-R Resonant Circuit: (i) To draw the resonance curve (ii) To Factor of the circuit (iii) To study the variation of impedance with								
Covered			rification of maximum power transfer theorem.								
			mum power	transier tri	eorem.						
		•	Faraday's law. the Mutual-Inductance (M-I) of two coils.								
			· · · ·		5.						
		on of Self-Inductar									
	-	esnel's equation fo			•						
	•	⁻ hermo EMF) – Te	•	•	en thermoo	ouple an	d hence				
		ctric power at a giv	•								
	7. Determinati	on of horizontal o	component	of the ear	th's magne	tic field	using a				
	vibrational and	deflection magnet	ometer.								
	8. To draw the B-H loop of a given specimen.										
Text	SUGGESTED										
Books,	1) A Text Boo	k on Practical Phy	on Practical Physics – K. G. Majumdar and B. Ghosh								
and/or		hysics – Worsnop	and Flint								
reference											
material											

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	2	1	1	2	3	2	1	1
CO2	3	2	1	-	2	1	1	2	3	2	1	1
CO3	3	2	1	1	2	1	1	2	3	2	1	1
CO4	3	2	1	-	2	1	1	2	3	2	1	1
CO5	3	2	1	1	1	1	1	1	2	1	1	1

Course	Title of the	Program Core	Tota	I Number of	f contact ho	urs	Credit				
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives (PEL)	(L)	(T)	(P)	Hours					
CYC401	Biochemistry: Structure and Function	PCR	3	0	0	3	3				
Pr	e-requisites	Course Asses	ssment met	hods [Conti		l mid-tern	) (MT)				
1.1.		Course Assessment methods [Continuous (CA), mid-term (MT) and end term (ET)]									
	NIL			CA+MT+E							
Course Outcome	s CO2: To dev CO3: To lea lipids, proteir CO4: To ger	lerstand the chemis elop the basic known rn different chemic ns, nucleic acids nerate concepts or ne towards biophys	wledge of co al aspects of molecular	ell structure of biomolec mechanics	and functio ules such a	is carboh	-				
Topics Covered	Amino Acid Introduction, peptide synth proteins (an Denaturation Chemistry o Introduction, important m sugars. N-ac	s and Protein Che classification acc nesis. Different me nino acid analysis of proteins. Differe of mono-, di-, oligo Conformation of onosaccharides li cetylmuramic acid lysaccharides – ce	emistry ording to the thods to det b). Primary ent methods o- and poly f monosac ke glycosid , sialic acid	heir compo termine the and secor of molecul -saccharide charides, s les, deoxy d, disaccha	composition ndary struct ar weight de es[6 L] structure a sugars, m arides and	rent met n of pepti ture of p eterminati nd funct yoinosito polysacc	des and proteins. on. ions of I amino harides.				
<ul> <li>Lipid chemistry[5 L] Introduction, Fatty acids, essential fatty acids, structure and function triacylglycerols, glycerophospholipids, sphingolipids, cholesterol, Properties of lipid aggregates – micelles, bilayers, liposomes and their possib biological functions. Biological membrane. Fluid mosaic model of membra structure, lodine number.</li> <li>Structure and function of DNA and RNA, nucleosides, nucleotides[12 L] Introduction, Purine and pyrimidine bases of nucleic acids, base pairing via bonding. Structure of RNA and DNA, double helix model of DNA and forc responsible for holding it. Chemical and enzymatic hydrolysis of nucleic acids. The structure acids.</li> </ul>											
Text Boc and/or reference material	eference 3. Principles of Physical Biochemistry by K. E. van Holde, C. Johnson and P. S. H										

# FOURTH SEMESTER

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12
COs												
CO1	3	2	3	3	1	2	2	3	3	1	3	2
CO2	3	3	3	3	1	2	3	3	3	1	3	2
CO3	3	3	3	3	3	3	2	3	3	3	3	2
CO4	3	3	3	3	1	1	2	3	3	1	3	2

Course	Title of the course	Program	Tota	al Number	of contact h	ours	Credit		
Code		Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours			
CYC402	Phase-equilibrium andChemical Kinetics	PCR	PCR 3 1 0 4						
I	Pre-requisites	Course Assessment methods [Continuous (CA), mid-term (MT) and end term (ET)]							
	NIL			CA+MT+	ET				
Course Outcomes	application. CO3: To learn multicomponent sy CO4:Understandth treatment. CO5: Concept of CO6: Numerical an	ne colligative the principle stems efundamentals catalysts tow alysis of the ef	properties and app of chemic vards read fect of vari	and their dication of al kinetics a ction rate ous param	thermodyn f distillation and correspo and its ap eters on rea	namic ori n technic onding the plication ction kine	ques of eoretical s. tics		
Topics Covered	<ul> <li>Phase rule and p of phase rule. Order of triple point, critic ferromagnetic phase</li> <li>Colligative propertic point, elevation of Reverse Osmosis</li> <li>solutions, Determint</li> <li>Two component</li> <li>Rule, Isothermal</li> <li>Industrial process</li> <li>distillation in petric</li> <li>rule(derivation not</li> <li>Henry's law, Az</li> <li>Entrainerand Press</li> <li>applications. Liquid</li> </ul>	er of Phase trans cal point, super ses. rties: Raoult's l es: relative low boiling point, p , van't Hoff ' nation of number systems: Idea fractional disti of isobaric f roleum refining required), Nor otropes and sure swing dis d-Liquid phase	nsition (1 st critical fluid aw and He wering of principle an i' factor a er average al binary so llation, Bo fractional of cractional of industrial industrial tillation; No equilibriu	and 2 nd ord d. Transitio enrys law; T vapour pro- nd industria and abnorn molar mas olution, liqu oiling point distillation, -Margules ary solution methods ernst distril m: phenol-	der). Phase n between p ( Thermodyna essure, low I application mal behavions of macro-r uid-vapour e vs Compo steam dis equation a n, Deviation of Azeot pution law: water syste	diagram: paramagn (4L) mics derivering of or of Osmo or of ele molecules equilibrium osition di tillation, and Kono from Rou ropic dis its deriva m, nicotir	concept etic and vation of freezing osis and ectrolytic s.(8L) n, Lever agrams, Vacuum owaloff's ult's and stillation: tion and		

	Chemical Kinetics:	
	Method to monitor the rate of different first and second order reactions.	(3L)
	Rate process approach towards complex reactions including Opposin parallel reaction, consecutive reactions, chain reactions; Pseudo first orde Determination of order of a reaction.	
	Temperature dependence of rate constant; Arrhenius equation, energy of a Lindemann theory of unimolecular reaction.	activation (2L)
	Collision theory; Transition State theory, Eyring equation, Interrelation Arrhenius theory, collision theory and TST.	ns betwee (4 L)
	Effect of ionic strength (primary and secondary salt effect), dielectric corpressure on rate. Primary kinetic isotope effect on the rate.	onstant a (3L)
	Kinetics of different composite reactions, including Auto-catalytic and reactions. Chemical kinetics of atmospheric reactions.	Oscillatii (3L)
	<b>Catalysis:</b> (3L) Rate expressions for Homogeneous catalytic reactions: Acid-base catalyze and enzyme catalyzed reactions. Determination of turnover number of enz	
Text Books and/or reference		
material	<ol> <li>Physical chemistry by P.C.Rakshit</li> <li>Physical Chemistry by Barrow, G.M. Tata McGraw-Hill (2007)</li> </ol>	
	6. Physical Chemistry by Castellan, G.W. 4th Ed. Narosa (2004)	

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	3	1	1	1	2	3	1	1	2
CO2	3	1	3	3	1	2	1	3	3	1	1	2
CO3	3	1	3	3	1	2	1	3	3	1	1	2
CO4	3	1	1	3	2	1	1	3	2	1	1	2
CO5	3	1	1	3	2	1	1	3	2	1	1	2
CO6	3	1	1	3	2	1	1	2	2	1	1	2

Course	Title of the	Program Core	Tota	I Number of	f contact hou	urs	Credit					
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P)	Hours						
		(PEL)										
0.404.00	Chemistry of	PCR	3	1	0	4	4					
CYC403	Elements and											
	Radioactivity			the de [Cen		) moid to						
Pre	e-requisites	Course Ass	Course Assessment methods [Continuous (CA), mid-term (MT) and end term (ET)]									
	NIL		a	CA+MT+								
				CATIONT								
Course	CO1: Knowle	wledge of periodic properties and their variation in period and group.										
Outcomes		al trends of elen										
	elements.			-								
	CO3: Knowle	edge the structure	and function	on of s, p, d	and f block	elements						
		pt of radioactive r		neir properti	es							
		rement of radioad										
		s uses of radioact										
Topics		operty: lonisation										
Covered		s, ionic radius var	n der waals	radii etc. ar	nd their varia	ation in p	eriod and					
	group. (5 L)											
	s block ala	ment:General tre	ands of ala	mente and	their comp	ounde	Hydrides,					
		es and other salts			then comp	ounus.	iyunues,					
			. (2 5	)								
	p block ele	ments:General t	rends of el	ements and	d their com	pounds:	Hydrides.					
		cids halides and										
	boranes,carb	oranes, silicon	es, silicat	tes, boror	n nitride,	borazin	es and					
		es, allotropes of										
	pseudo-halo	gens, and interha	logen comp	ounds, che	mistry of no	ble gases	s.(10 L)					
							·					
		f block elemen										
		ize, oxidation st	lates and	their stadii	isation, nyc	ariae, ox	des and					
	nyuruxiues, i	nalides etc. (5 L)										
	Radioactivit	v										
		Radioelement, I	Nature of ra	adiations. C	haracteristic	cs of Alp	ha. Beta.					
		and positrons.					,,					
		sus chemical rea		lioactive de	cay and re	covery, 7	heory of					
	radioactive of	lisintegration, Ca	use of Radi	oactivity, D	isintegration	series a	nd group					
	displacemen	· · · ·										
		ts of radioactivity					•					
		d half-life, Deter	rmination o	f average	life, Radioa	active eq	uilibrium,					
	-	oblems. (4 L)	- 1		- 11-11 - <b>-</b> 1		-1					
		nsmutation, cycl			activity, Ma	in-made	element,					
		f Actinide elemen bars, isobaric iso			thode of ico	tone pror	arationa					
		thod, Thermal di	•									
		nethod, Szilard-Cl				aotination	mounou,					
		ope: Medicinal us			chemistrv (a	activation	analysis.					
		tion analysis), L										
	-	n, Agricultural use		•		-	0					
1		ssion, Nuclear fusion, nuclear spallation, Nuclear binding energy and action, Nuclear binding forces, Nuclear shell model: Magic number.(3L)										

Text Books,	1) Inorganic Chemistry, Part I/II, R.L. Dutta, New Book Stall
and/or	2) Inorganic chemistry, Shriver & Atkins, Oxford
reference	3) Concise inorganic chemistry, Lee, Wiley India Pvt. Ltd.
material	4) Advanced Inorganic Chemistry, Cotton & Wilkinson, John Wiley
	5) Essentials of Nuclear Chemistry, H. J. Arnikar, New Age International
	Publishers, 2009

	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	2	2	2	3	3	2	1	1
CO2	2	2	3	2	2	2	2	3	3	1	1	1
CO3	2	3	3	2	2	2	2	3	3	3	1	1
CO4	2	2	3	2	2	2	2	3	3	2	1	1
CO5	3	2	3	2	2	2	2	3	3	3	1	1
CO6	3	2	3	2	2	2	2	3	3	3	1	1

Course	Title of the	Program Core	Total	number of	f contact ho	ours	Credit				
code	course	(PCR)/Electives	Lecture	Tutorial	Practical	Total					
		(PEL)	(L)	(T)	(P)	hours					
CYC404	Organic	PCR	3	1	0	4	4				
	Reaction										
	Mechanism and										
	Reactive										
Due	Intermediates	Course Assessment methods [Continuous (CA), mid-term (MT)									
Pre	-requisites	Course Assessm				, mia-ter	m (IVI I )				
	NIL			end term ( CA+MT+E							
Course			-								
outcomes	<b>CO1</b> : To understar <b>CO2</b> : To understar										
oucomes	reactions			uoprinic a	na nacieop		Siluion				
	CO3: To understand various aspects of elimination reactions										
	CO4: To understa					hon-car	on and				
	carbon-heteroatom	•				borr bark					
	CO5: To understar		estidating	the organ	ic reaction	mechan	ism and				
	to apply them in an		• •	<b>J</b>							
	CO6: To apply som			reactions	in organic :	synthesis	5				
Topics	Chemistry of read	tive intermediate	s:								
covered	Formation, structu			reactions	of carboc	ations, ı	adicals,				
	carbenes, nitrenes	, carbaions, arynes	6.			(8	L)				
	Methods for inves	tigation of mech	anism:								
	Factors affecting			activation	energy, f	ransitior	state,				
	reactiveintermediat										
	analysis, detection,										
	isotopelabelling, p		tope effec	ct, second	lary kinetic	; isotope					
	cross overexperime	ent.					(4				
	L)										
	Reaction mechan										
	Substitution on sp										
		-									
	electronic effect of substituents, <i>ortho/para</i> ratio, partial rate factors and selectivity, kinetic and thermodynamic control, nitration, halogenations, sulphonation, alkylation										

	CURRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	and acylation, diazo coupling, <i>ipso</i> substitution, Nucleophilic attack on benzene system: substitution of hydrogen and atoms other than hydrogen, reactions <i>via</i> aryne intermediate, reactions and reactivity pattern in condensed aromatic systems. (8 L) <b>Elimination reactions:</b> E1, E2, and E1CB mechanism, effect of stereochemistry, regioselectivity, isotope and stereo electronic effects effect. (4 L)
	Addition to carbon-carbon multiple bonds: Mechanistic and stereochemical aspects of addition reactions involving electrophiles, nucleophiles and free radicals, regio- and chemoselectivity, Hydrogenation of double, triple bonds and aromatic rings. Hydroboration reaction, Epoxidation reaction. (5 L)
	Addition to carbon-heteroatom multiple bonds: Mechanism of metal hydride reaction of substituted and unsubstituted carbonyl compounds, acids, esters and nitriles. Addition of Grignard reagents, organo-Zn and organo-Li and organo-Si reagents to saturated and unsaturated carbonyl compounds. Wittig reaction. Mechanism of condensation involving enolates. (5 Lectures)
	Reaction mechanism of some rearrangement reactions:Allylic rearrangement, neopentyl rearrangement, pinacol-pinacolone, Beckmann,Wolff, Hofmann, Curtius, Lossen and Schmidt rearrangement, Benzyl-Benzilic acidrearrangement, Bayer-Villiger oxidation.(6 L)
	Methods for investigation of mechanism: Factors affecting the rate of reactions, activation energy, transition state, reactive intermediates, rate determining step, Hammond's postulate, product analysis, detection, isolation and trapping of intermediates, application of isotopes—isotope labelling, primary kinetic isotope effect, secondary kinetic isotope effect, cross over experiment. (4 L)
Text Books, and/or reference materials	<ol> <li>A Guidebook to Mechanism in Organic Chemistry: Peter Sykes</li> <li>Organic Chemistry: Subrata Sengupta</li> <li>Advanced General Organic Chemistry: A Molecular Approach: Sachin Kumar Ghosh</li> </ol>
	<ul><li>4. Organic Chemistry: G. Marc Loudon</li><li>5. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure: Michael B. smith</li></ul>

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	2	1	1	3	2	1	3	3
CO2	3	3	2	3	2	1	1	3	2	1	3	3
CO3	3	3	2	3	2	1	1	3	2	1	3	3
CO4	3	3	2	3	2	1	1	3	2	2	3	3
CO5	3	3	3	3	2	3	1	3	2	1	3	3
CO6	3	3	2	3	2	1	1	3	2	1	3	3

Course	-	Title of the	Program Core	Total	number of	f contact he	ours	Credit			
code		course	(PCR)/Electives	Lecture	Tutorial	Practical	Total				
			(PEL)	(L)	(T)	(P)	hours				
CYS451	Ther	modynamic	PCR	0	0	4	4	2			
		perties of	(Practical)	Ū	Ũ		•	-			
		lution and	(*********)								
	I	Mixture									
	La	boratory									
P	re-rec	luisites	Course Assessment methods: [Continuous evaluation (CE) and end assessment (EA)]								
	N			enu	CE+EA	( )]					
	IN	IL			CE+EA						
Course	e <b>CO1</b> :Characterization of thermodynamic parameters.										
Outcome		CO2: Evaluation of fundamental properties of liquids.									
			g molecular interac				_				
	С	<b>O4</b> :developm	entoflaboratoryskill	,datahandl	ingandinter	pretation,er	roranalys	is.			
Topics		1. Determir	nation of partition of	coefficient	of a solute	between a	n organic	solvent			
Covered		and wate	er								
		2. Determir	nation of equilibrium constant of a reaction $KI+I_2 \leftrightarrow KI_3$								
		3. Determir	nation of CST of phenol-water system								
	4	4. Determir	ation of heat of solution of Benzoic acid								
	Į	5. Experim	ent on viscosity me	asuremen	t						
	(	•	ent on surface tens								
	-	-	nation of solubility p								
	8	8. Determination of specific rotation of cane sugar									
			er practical as assig		•						
Text	1	. Instructio	n manual provided	by the Ins	tructor						
Books,	2		experiments in Ph								
and/or		B. Advance	d Physical Chemis	try Experin	nents: By G	urtu & Gurt	u				
reference materials											

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	1	1	-	2	1	1	2	1
CO2	3	1	1	3	1	1	-	2	1	1	2	1
CO3	3	1	1	3	1	1	-	2	1	1	3	1
CO4	1	1	1	3	1	1	-	2	2	1	2	1

Course	Title of the	Program Core	Tot	al Number	r of contact h	ours	Credit					
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P)	Hours						
		(PEL)										
CYS452	Identification	PCR	0	0	4	4	2					
	of Acidic and	(Practical)										
	Basic Radicals											
	Laboratory											
Pr	e-requisites	Course Asse		-	ontinuous eva	aluation (C	E) and					
			en	d assessm								
	NIL		CE+EA									
Course	CO1: Knowled	ge of elementary physical properties of cations and anions										
Outcomes	<b>CO2</b> . Knowled	ge of dry reactions of cations and anions										
		lge of different we				nd anions.						
		ns of interfering ra		their rem	oval process							
	CO5: Group s	eparation of catio	ns.									
Topics	Qualitative in	organic analysis o	of mixtures									
Covered		Radicals: Na ⁺ , K ⁺	, Ca⁺², Sr⁺	² , Ba ⁺² , Al	⁺³ , Cr ⁺³ , Mn ⁺³	² , Fe ⁺³ , Co	5 ⁺³ , Ni ⁺³ ,					
	Cu ⁺² , Zn				- 2 2 -	- 2						
	Anion R	adicals: F⁻̯, Cl⁻, E	$3r^{-}, BrO_{3}^{-},$	I⁻, SCN⁻,	S ²⁻ , SO ₄ ²⁻ , S	₂ O ₃ ²⁻ , NO ₃	₃ ⁻ , NO ₂ ⁻ ,					
		$O_3^{3-}, CrO_4^{2-}/Cr_2O$		,	,							
	Insolubl	e Materials: Al ₂ O	$_{3}, Fe_{2}O_{3}, C$	$r_2O_3$ , SnO	$_2$ , SrSO ₄ , Ba	$SO_4$ .						
Text Bool	s. 1. Text book	of qualitative incr	anic ana	veie by A								
and/or												
reference				Je anu A.r								
material												
material												

	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	3	3	2	2	1	3	3	3	1	1
CO2	2	2	3	3	2	1	1	3	3	3	1	1
CO3	1	3	3	3	2	2	1	3	3	3	1	1
CO4	3	3	3	3	2	2	1	3	3	3	1	1
CO5	3	2	3	3	2	3	1	3	3	3	1	1

Course	Title of the	Program Core	Tot	al Number	of contact he	ours	Credit			
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives	(L)	(T)	(P)	Hours				
		(PEL)								
CYS453	Biochemistry	PCR	0	0	3	3	2			
	Laboratory	(Practical)								
Pr	e-requisites	Course Asse	Course Assessment methods: [Continuous evaluation (CE) and							
		end assessment (EA)]								
	NIL			CE+E	A					

CURRI	CULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
Course Outcomes	<ul> <li>CO1: Development oflaboratoryskill,datahandlingandinterpretation,erroranalysis</li> <li>CO2: Characterization of biomolecules such as proteins, vitamin based on biophysical means</li> <li>CO3: Estimation of amino acid, vitamin from unknown sample</li> <li>CO4: Dealing and extraction of natural products</li> </ul>
Topics Covered	<ol> <li>Estimation of protein</li> <li>Estimation of carbohydrate</li> <li>Estimation of iodine value of a given oil/fat</li> <li>Estimation of ascorbic acid in fruit juice</li> <li>Separation of a mixture of amino acid</li> <li>Extraction of natural product</li> </ol>
Text Books, and/or reference material	<ol> <li>Instruction manual provided by the Instructor</li> <li>Vogel's Textbook of Practical Organic Chemistry</li> <li>An Advanced Course in Practical Chemistry by A. K. Nad, B. Mahapatra &amp; A. Ghoshal</li> </ol>

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	1	1	-	2	2	1	2	1
CO2	3	2	3	3	1	2	-	2	3	1	2	1
CO3	3	1	3	3	1	1	-	2	3	1	3	1
CO4	1	1	2	3	1	1	-	2	2	1	2	1

Course	Title of the	Program Core	Tota	I Number o	of contact ho	ours					
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	Cro dit				
		Electives	(L)	(T)	(P)	Hours	Credit				
		(PEL)	(=)	(1)	(1)	riouro					
	Analytical and	PEL	3	0	0	3	3				
CYE411	Environmental		0	U	0	5	5				
CTE411											
	Chemistry										
Pr	e-requisites	Course Asses		-	· · ·	, mid-terr	n (MT)				
			an	d end term	(ET)]						
	NIL	CA+MT+ET									
Course	CO1: Knowled	ge on chemical processes that regulate the environment as well as									
Outcomes		be paid to understanding chemical equilibrium and kinetics of natural									
	systems.										
	-	ourse is designed to give the students a broad understanding of the									
			•				•				
		I to the basic concepts and principle of different analytical techniques. Durse imparting the knowledge about the theory and techniques of									
					•						
		ing introductory ins					incipie.				
		ge on quantificatio									
	CO5: Knowled	CO5: Knowledge on Ecologically safe alternatives and basic principle of green									
	chemistry.										
Topics	Analytical che	emistry: Quantitat	ive and qu	alitative an	alysis: Dete	ction of e	element,				
Covered	detection of	cations and an	ions, Vol	umetric a	nalysis (ad	cid-base.	redox.				
		c), Colorimetric a	•		•	•	-				
L					ayoio, giu		anaryoio,				

CUR	RICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY							
	conductometric, potentiometric titration, ion selective electrodes etc.(18 L)							
	<b>Environmental chemistry:</b> Chemical aspects of air, water and soil pollution, chemistry of photochemical and sulphurous smog, stratosphere-chemistry and pollution, chemical specification, priority and water pollutants-their effects, chemical analysis and control. Environmental significance of Radioactive and Biomedical waste disposal. Ecological balance and planning of Industrial complexes. Advanced Oxidation Process, basic principle of. Green chemistry. (18 L)							
Text Books, and/or	1. Skoog and West's, Fundamentals of Analytical Chemistry, Cengage Learning India Pvt. Ltd., Delhi							
reference	<ol> <li>Sawyer, C.N., McCarty, P.L., and Parkin, G.F., Chemistry for Environmental Engineering, 5th Edition, McGraw-Hill, Inc., New York.</li> </ol>							
material	<ol> <li>Manahan, S.E., Fundamentals of Environmental Chemistry, Lewis Publishers, Inc., Boca Raton.</li> </ol>							
	<ol> <li>Seinfeld, J. H. and Pandis, S N., Atmospheric Chemistry and Physics: from Air Pollution to Climate Change, John Wiley.</li> </ol>							
	<ol> <li>Weber, W. J. Jr., Physicochemical Processes for Water Quality Control, John Wiley and Sons Inc., New York.</li> </ol>							
	6. A. K. Dey, Environmental Chemistry, Wiley Eastern, 2002.							
	7. A. S. Douglas, F. J Holler, S. R. Crouch, Principles of Instrumental Analysis, Thomson, 2007.							
	<ol> <li>Metcalf&amp;Eddy, Wastewater Engineering-Treatment and Reuse., 4th edition, McGraw-Hill, 2003; Publisher: McGraw-Hill Science/Engineering/MathISBN-13: 978-0070418783, ISBN-10: 0070418780</li> </ol>							

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	2	2	2	3	3	2	1	1
CO2	2	2	3	2	2	2	2	3	3	1	1	1
CO3	2	3	3	2	2	2	2	3	3	3	1	1
CO4	3	3	3	1	2	2	3	3	3	3	1	1
CO5	3	3	3	1	1	3	3	3	3	2	1	1

Course	Title of the course	Program	Tota	I Number of	of contact h	ours	Credit			
Code		Core (PCR)/	Lecture	Tutorial	Practical	Total				
		Electives	(L)	(T)	(P)	Hours				
		(PEL)	. ,		· · ·					
CYE412	Chromatographic	PEL	3	0	0	3	3			
	Separation and									
	Instrumental									
	Methods of									
	Analysis									
	Pre-requisites	Course	Course Assessment methods [Continuous (CA), mid-term							
	·		(MT) and end term (ET)]							
	NIL		CA+MT+ET							

CL	IRRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
Course Outcomes	<ul> <li>CO1: Get a comprehensive knowledge about solvent extraction, ion exchange and different chromatographic techniques</li> <li>CO2: Application of these techniques in research and industrial capacity</li> <li>CO3: Working principles and application of some instrumental methods</li> </ul>
Topics Covered	Separation techniques:         Solvent extraction, distribution law, distribution constant, extraction of inorganic species, separation of metal ion as chelates, extraction of metal chlorides and nitrates, solid phase extraction.       (4L)         Ion exchange, ion exchange resin, ion exchange equilibria, application of ion exchange methods, home water softeners.       (2L)         Chromatography: general description of chromatography, classification of chromatography, elution of column chromatography, migration rates, distribution constants, relation between, volumetric flow rate and linear flow rates, retention factor, selectivity factor, rate theory of chromatography, a quantitative description of column efficiency, thin layer chromatography (TLC).       (4L)         Gas chromatography (GC), Instrumentation, Introduction, carrier gas system, sample injection system, column configurations and column oven, detection system, characteristic of ideal detector, FID, TCD, ECD, mass spectroscopy gas chromatography column and stationary phase, capillary, tubular column, packed column, liquid stationary phase, applications.       (4L)         High performance liquid chromatography; on exchange or ion chromatography, size exclusion chromatography, and chiral chromatography.       (4L)         Instrumental methods:       Thermoanalytical Techniques: thermogravimetric analysis (TGA), Introduction, principle, instrumentation, Factors affecting TGA, application, differential thermal analysis, principle, instrumentation, application.       (4L)         Instrumental methods:       (4L)       Electroanalytical Techniques: thermogravimetric analysis (TGA), Introduction, principle, instrumentation, application.       (4L)
Text Books,	1. Fundamentals of analytical chemistry, Skoog, West, Hollerand Crouch,8th edition, Thomson
and/or reference	2. Instrumental methods of analysis, Williard, Merit, Dean, Settle, CBS publishers & distributors
material	<ol> <li>Inorganic electrochemistry, Theory practice and application, Piero Zanzello, RS.C</li> </ol>

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	3	3	3	3	3	2
CO2	3	3	3	3	3	3	3	3	3	2	1	2
CO3	3	3	3	3	3	3	3	3	3	3	3	2

Course	Titleofthecourse	ProgramCore(	To	talNumber	of contactho	ours	Credit						
Code		PCR)/ Electives(PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours							
CYC501	Fundamentals of Electrochemistry and Data Analysis		3	1	0	4	4						
Р	re-requisites	Course Assessm	Course Assessment methods [Continuous (CA), mid-term (MT) and end term (ET)]										
	NIL	CA+MT+ET											
CourseOu omes	CO2: Understa CO3: Electroch CO4: To be abl CO5: To under	on of conductometr nding the dissociat emical cell: princip e to analyze the da erstand data fitti erform data analys	ion of elec le and app ata using d ng, applic	trolytes in s lication. ifferent sta	tistical tools								
TopicsC	Electrochemist	ry:											
overed	for strong and w Hückel-Onsager Kohlrausch's la	Conductance:Electrolyticconduction,conductionsofsolutions:specific,equivalentand molar conductance, variation of molar conductivity with concentrationfor strong and weak electrolytes, Arrhenius theory of electrolytic dissociation, Debye-Hückel-Onsager theory of ionic atmosphere.Kohlrausch's law, transport number and its determination, abnormal transportnumber, Applications of conductance measurement, conductometric titrations.(5L)											
	Electrochemica variousfactors parameters,pote												
		ell, liquid junction sitized solar cell.	ell, liquid junction potential, commercial cells including fuel cell,Li ion sitized solar cell. (5L)										
	Data Analysis:												
	geometric mear	entral tendency:A a, harmonic mean rties, application a	for discret	e, grouped	, continuous								
	deviation, varia	dispersion/variab nce, skewness, ku merits, demerits a	urtosis etc	for discre	te, grouped	, continu	standard ous data (4L)						
	and moments a	<b>Moments:</b> Raw moments, central moments, relation between moments about mean and moments about any point and vice-versa, Sheppard's correlation for moments, Pearson's $\beta$ , $\gamma$ coefficients in terms of moments. (4L)											
	-	g: Covariance, Linear Regression: Least Square Curve fitting, urve fitting with examples etc. (2L)											
	<b>Theoretical D</b> derivations of	iscrete Distribut			•								

### FIFTH SEMESTER

C	URRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	problems. Interrelation between these three distributions. (4L)
	<b>Theoretical Continuous Distribution:</b> Uniform, Gaussian, Central Limit Theore with their derivations of moments, skewness, kurtosis, various properties an numerical problems. (2L
	Application of data analysis: in Theoretical and Experimental research, Indust application.
	Programming and Software Techniques: Fortran programming, MATLAB/ M Office Excel/ Mathematica library functions etc. (2L
Text Books,	1. Physical chemistry by P. Atkins and J.de Paula
and/or	<ol><li>A text book of physical chemistry by K. L. Kapoor</li></ol>
reference	3. Physical chemistry by P.C.Rakshit
material	<ol> <li>Fundamentals of Mathematical Statistics (A Modern Approach) by S. Gupta and V. K. Kapoor, 10th Revised Edition 2000, Reprint 2002, Publishe Sultan Chand &amp; Sons, New Delhi</li> </ol>

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	1	1	1	2	1	1	1	1
CO2	3	1	1	3	1	1	1	2	1	2	1	1
CO3	3	1	3	3	2	3	1	3	3	3	2	2
CO4	3	3	3	2	2	2	2	3	3	1	2	1
CO5	3	3	3	2	2	2	2	3	3	1	2	1

Course	Title of the	Program Core	To	tal Numbe	r of contact	hours	Credit				
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives	(L)	(T)	(P)	Hours					
		(PEL)									
CYC	Chemistry in	PCR	3	1	0	4	4				
502	Solution and										
	Solid State										
	Chemistry										
Pr	e-requisites	Course Ass	Course Assessment methods [Continuous (CA), mid-term (MT)								
			and end term (ET)]								
	NIL		CA+MT+ET								
Course	CO1: Unders	tand different concepts of acids and bases									
Outcomes	s CO2: Know a	: Know about the thermodynamic aspects of Lewis acid and base interaction									
		stand the concept				•					
		concept of effect of				<pre>c reaction</pre>					
		pasic idea of Inor									
		the thermodynam				solid					
		<ul> <li>CO7: Born Lande equation and Kapustinskii equation,</li> <li>CO8: Crystal system and different types of unit cells and crystals in inorganic solid</li> </ul>									
						als in inorga	anic solid				
	CO9: Defect	of crystal and the	e associate	ed property	/						

	RICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
Topics Covered	<b>Concept of acids and bases:</b> The Arrhenius concept, Concept of K _w , concept of pH, Strength of acids and bases(hydracids and oxyacids), levelling effect of water, solvent concepts, Bronsted Lowry concept, Lewis concepts. (5 L)
	Hard-Soft acid base concept, relation of hardness to ionisation potential and electronegativity and frontier orbital. (2 L)
	Thermodynamic of Lewis acid and base interaction, the Drago-Wayland equation. (1 L)
	Monoatomic ions and their acid –base properties, polyatomic ions and their acid- base properties. (1 L)
	<b>Redox Chemistry:</b> Redox reaction, ion electron balancing, standard reduction potential and their diagrammatic representation. (3 L)
	Redox predominance diagrams of elements, disproportionation and metastable state. (2 L)
	Redox chemistry and extraction of elements from ores. Ellingham diagrams. (2 L)
	Effect of concentration and pH on redox reaction, uses of redox series in chemical reaction, Pourbaix diagrams. (4 L)
	<b>Ionic equilibrium and precipitation reactions:</b> <b>Ionic compounds:</b> Factors effecting ionic radii, Fajans rule, lattice energy, Born Haber cycle and its application. (4 L)
	Born Lande equation, modification of Born-Lande equation, Kapustinskii equation, radius ratio rule. (4 L)
	Solid State Chemistry: Crystal system and lattices, unit cell, Miller planes, crystal packing, metallic bond. (4 L)
	ionic crystals, structures of AX, $AX_2$ , $AX_3$ , $A_2X_3$ , type Structures of mixed metal oxides: spinel and inverse spinel, perovskite. (4 L)
	Crystal structure related to super conductivity, ferroelectric and piezo electric property, crystal defects, stoichiometric and nonstoichiometric defect, Schottkey and Frenkel defect, etc.Inorganic nanomaterial and polymers.(4 L)
Text Books, and/or reference	<ol> <li>Inorganic Chemistry, Part I ,R.L. Dutta New Book Stall</li> <li>Fundamental concept of Inorganic Chemistry, vol 3, Asim K. Das, CBS publishers &amp; distributors</li> </ol>
material	<ul> <li>a) Inorganic Chemistry, Huheey, Keiter, Keiter, Medhi, Pearson education</li> <li>4) Inorganic chemistry, Shriver &amp; Atkins, Oxford</li> <li>5) Concept and models of inorganic Chemistry, Douglas, Mcdeniel, Alexander, Wiley IndiaPvt. Ltd.</li> </ul>
	6) Concise inorganic chemistry, Lee, Wiley India Pvt. Ltd.

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3		1	1	3	2	1	2	1
CO2	3	3	3	3		1	1	3	2	1	2	1
CO3	3	3	3	3		1	1	3	2	1	2	1
CO4	3	3	3	3		1	1	3	2	1	2	1

	CURF	RICULU	MAN	D SYLL	ABUS	FOR I	NTEG	RATED	MSC	IN CHEN	<b>/IISTRY</b>	
CO5	3	2	3	3		1	1	3	2	1	2	1
CO6	3	3	3	3		1	1	3	2	1	2	1
C07	3	3	3	3		1	1	3	2	1	2	1
CO8	3	3	2	2		1	1	3	1	1	2	1
CO9	3	3	3	3		1	1	3	2	1	2	1

Course	Title of the course	Program Core		Number of	contact hou	rs	Credit	
Code		(PCR) /	Lecture(L)	Tutorial	Practical	Total		
010503	Oh analatmy of	Electives (PEL)	0	(T)	(P)	Hours	0	
CYC503	Chemistry of Heterocyclic Compounds	PCR	3	0	0	3	3	
Pre	e-requisites	Course Assessn	nent methods	Continuor	is (CA) mid	-term (M	T) and	
		0001307(330331)		d term (ET)			r) and	
	NIL			A+MT+ET				
Course Outcomes	CO1: To learn vario CO2: To explain the CO3: To solve the r CO4: To relate the and two rings includ CO5: To apply the l CO6: To investigate	e basis of aromatic mechanisms of syn se concepts on st ding purine & pyrim knowledge on som e presence of heter	ty, acidity-ba thesis and re udy of hetero idine and the e natural puri ocyclics in al	sicity of het actions of h ocycles with ir derivative nes like uric kaloids	erocyclic co eterocyclic two or mo s acid, caffe	mpounds compour re heterc in etc.	ids 5 atoms	
Topics Covered	Nomenclature of heterocycles, common nomenclature, replacement method, Hantzs Widman (IUPAC or Systematic) method. (4 L							
	Aromatic and nonaromatic heterocycles, moleculelar orbital picture and aromatic characteristics of pyrrole, furan, thiophene and pyridine and other small ring heterocycles. Comparison of basicity of pyridine, piperidine and pyrrole. (3 L)							
	Generalized approa rings with one or tw	•		cles posse (3 L)	ssing 5, 6 a	ind 7 me	mbered	
	Reactions of heter substitution. Mecha Oxidation and reduc	anism of nucleop	nilic substitu					
	Fused five and six – membered heterocycles. Preparation and reactions of indole, quinoline and isoquinoline with special reference to Fisher indole synthesis, Skraup synthesis and Bischler- Napieralski synthesis. Mechanism of electrophilic substitution reactions of indole, quinoline and isoquinoline. (4 L)							
	synthesis and Bise	chler- Napieralski	synthesis. N				Skraup stitution	
	synthesis and Bise	chler- Napieralski quinoline and isoq	synthesis. M uinoline.	lechanism	of electrop	hilic sub	Skraup stitution	
	synthesis and Bise reactions of indole,	chler- Napieralski quinoline and isoq ered heterocycles v es: Structure, synth	synthesis. M uinoline. vith two or me	lechanism ore hetero a	of electrop	hilic sub (	Skraup stitution (4 L) (4 L)	
	synthesis and Bise reactions of indole, Five and six membe Purine & pyrimidine	chler- Napieralski quinoline and isoquered heterocycles ves: Structure, synthcaffein, xanthine.	synthesis. M uinoline. vith two or me nesis, reactio	lechanism ore hetero a	of electrop	hilic sub (	Skraup stitution (4 L) 4 L)	

reference	2. Heterocyclic Chemistry, T. R. Gilchrist, Longman, 1989.
material	3. Topics in Heterocycles Chemistry. G. W. Gribble. Spinger-Verlag Berlin Heidelberg,
	2010.
	Suggested Reference Books:
	4. Modern Heterocyclic Chemistry. 4 Volume Set. Julio Alvarez-Builla, Juan Jose Vaquero,
	José Barluenga. Wiley. 2011.
	5. Principles of Modern Heterocyclic Chemistry, L.A. Paquette, W.B. Benjamin, Inc., 1978.
	6. Handbook of Heterocyclic Chemistry. Alan R. Katritzky and A. F. Pozharskii, Elservier,
	2000.
	7. The Chemistry of Heterocycles. T. Eicher, S. Hauptmann, Wiley-VCH 2003
	8. Heterocyclic Chemistry, J.A.J. Joule and G.F. Smith, ELBS, 2nd Ed., 1982.

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	3	1	1	3	3	3	1	3	2
CO2	3	2	2	3	1	2	3	3	2	1	3	1
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3
CO6	3	3	3	3	3	3	3	3	3	3	3	3

Course	Title of the	Program Core	Total nur	nber of co	ntact hours	3	Credit		
code	course	(PCR)/Electives	Lecture	Tutorial	Practical	Total			
		(PEL)	(L)	(T)	(P)	hours			
CYC504	Industrial	PCR	3	0	0	3	3		
	Chemistry								
Pre-	requisites	Course Assessm				, mid-tei	rm (MT) and		
				end term (					
	NIL			CA+MT+	·ET				
Course	CO1: To understar	d the applications	of chemis	try in the i	ndustrial se	et-up			
outcomes	CO2: To develop tl			•		•	IS		
	CO3: To learn ab								
	materials, glass, ce	eramics	-			-	-		
		: To apply biotechnology in solving some day today problems							
	<b>CO5</b> : To apply different chemical tools which are useful and valued in industry						ry		
	CO6: To apply the	chemistry knowled	lge for sol	ving indus	trial proble	ms			
Topics	Fuel:								
covered	Coal, Petroleum,			•	•				
	liquefaction of coal	, distillation of petr	oleum, an	alysis of c	oal).	(	8 L)		
	Polymers:								
	Types, structures	and synthesis r	olymers	Molecula	r weights	of noly	mers Poly		
	dispersity index, d								
	plastics, industrial	0 1 7			(6 L)	adon, a	lonnoootting		
	[·····		j	-	()				
	Paints and pigme	nts:							
	Introduction, defini	oduction, definitions, types, emulsions, additives, anti-corrosion properties, chemical							
	formulas and comp	ositions.			(5 l	_)			
	Cementing mater				_				
	Lime (types, manu	facture, properties	and appl	ications);	Cement -T	ypes, dil	ferent types		
	Lime (types, manu		and appl	ications);	Cement -T	ypes, dif	fferent type		

	CURRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	of industrial preparations, composition and chemistry. (5 L)
	Glass and ceramics:
	Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties. (5 L)
	Biotechnology Industry:
	Introduction, Bioremediation of chemical waste, Bioleaching of ores, Biocatalyst, Fermentation, production of vinegar, Biofuel. (6 L)
Text Books, and/or	1. Industrial inorganic Chemistry by K. H. Büchel, H. H. Moretto, P. Woditsch 2. Industrial Chemistry by B. K. Sharma
reference materials	3. Biotechnology in the Chemical Industry: Towards a Green and Sustainable Future by P. Bazpai
materials	4. Engineering Chemistry, 2 nd Edition, Wiley

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	3	2	2	1	3	3	3	2	2
CO2	3	1	3	3	3	2	1	3	3	3	2	2
CO3	3	1	3	3	3	2	1	3	3	3	2	2
CO4	3	3	3	3	3	2	1	3	3	3	2	2
CO5	3	3	3	3	3	3	3	3	3	3	2	2
CO6	3	3	3	3	3	3	2	3	3	3	2	2

CourseC ode	Titleofthecourse	ProgramCore( PCR)/	To	talNumbero	of contactho	urs	Credit				
oue		Electives(PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours					
CYC505	Ionic Equilibrium and Surface Chemistry	PCR	3	0	0	3	3				
P	re-requisites	Course Asses		hods [Cont d end term	• •	), mid-ter	m (MT)				
	NIL	L CA+MT+ET									
CourseOu omes	CO2:Applying the CO3: Analysing CO4: Applying t activities. CO5: Understand	<ul> <li>CO1: Understanding the concept of ionic equilibrium.</li> <li>CO2: Applying the concept of activity and solubility product.</li> <li>CO3: Analysing the concept of adsorption to estimate catalytic efficiency.</li> <li>CO4: Applying the basics of surfactant science toward household and indus activities.</li> <li>CO5: Understanding the basics of nano science.</li> <li>CO6: Evaluation the potentiality of nanomaterials towards various applications.</li> </ul>									
TopicsC overed	solutions, buffer	<b>n:</b> pH of strong and capacity, pH n ons among activ	netric titrat	tion, acid-l	base indica	tor and	indicator				

	strength of electrolytic solution, Debye-Huckel law (derivation excluded determination of activity coefficient, activity and solubility product, application toward group separation of cations, common ion and salt effect on the solubility of sparingl soluble salts. (6L)
	Adsorption: Thermodynamics of adsorption, Physisorption and chemisorption, Isosteric heat of adsorption, Langmuir, BET (derivation not required), Gibbs adsorption isotherms Competitive adsorption. Surface tension and surface pressure, Cohesion, adhesion capillary action, Contact angle, interfacial tension, Concept of Hysteresis. Application of adsorption: Estimation of surface area of solids, Removal of contaminants from polluted water and others. (6 L) Rate expression of the heterogenous surface catalyzed reactions. Catalytic poison and promoters. (3L)
	<b>Micellar system:</b> Concept of micelle, reverse micelle and microemulsion, hydrophobic effect, factor affecting CMC, determination of CMC, Thermodynamics of micellisation, micella aggregation number and fraction of counter ions bound to a micelle. Application of surfactants.
	Colloidal system: Theory of electrical double layer, zeta potential. How zeta potential is measured.Colloids: classification of colloidal systems, stability of colloids, the properties and applications (4 L) Concept of nanoparticle, Metal-organic and Carbon-organic framework. (4 L)
Text Books and/or reference materials	<ul> <li>s, 1. Physical chemistry by P. Atkins and J.de Paula</li> <li>2. Physical chemistry by Laidler and Meiser</li> <li>3. A text book of physical chemistry by K.L.Kapoor</li> <li>4. Introduction to applied colloid and surface chemistry by G. M. Montogeorgis an S. Kill (Wiley)</li> <li>5. Physical Chemistry of surfaces by A. W. Adamson and A. P. Gast (Wiley India)</li> </ul>

	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	3	2	1	1	2	2	2	1	1
CO2	3	1	1	2	1	1	1	2	1	2	1	1
CO3	3	1	3	3	2	2	1	3	3	3	2	2
CO4	3	3	3	2	2	1	1	2	3	2	2	2
CO5	3	3	3	2	2	1	1	2	3	2	3	3
CO6	3	3	3	2	2	1	1	2	3	2	3	3

Course	Title of the course	Program	Tota	l Number	of contact h	ours	Credit		
Code		Core (PCR)/ Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours			
CYS551	Chemical Kinetics, Surface Chemistry and ConductometricA nalysis	PCR (Practical)	0	0	3	3	2		
Р	re-requisites	Course Asse		-	continuous e ment (EA)]	valuation	(CE) and		
	NIL			CE+	EA				
Topics Covered	<ol> <li>Determina</li> <li>Study of t rate const</li> <li>Kinetic stu</li> <li>Determina of adsorpt</li> <li>Conductor</li> <li>Verificatio</li> <li>Measurer</li> </ol>	ntoflaboratorysh ation of rate con ation of rate con he kinetics of th ant and influence add of iodine clo ation of amount ion isotherm metric determine n of Ostwald dil ment of interfaci ation of CMC of	kill,datahar stant of inv stant of hy ne reaction ce of ionic ck reaction of acetic ation of str ution law al tension ionic surfa	ndlingandii version of vdrolysis of between strength of acid adsor rength of a by contac actant by c	sucrose f ester by co $K_2S_2O_8$ and n it rbed by cha ncid in a mix t angle mea	onductome I KI, deter Ircoal and ture surement ric method	etry mination c evaluation		
Text		nanual provideo	-						
<ul> <li>Books,</li> <li>and/or</li> <li>reference</li> <li>materials</li> <li>2. Selected experiments in Physical Chemistry By N.G.Mukherjee</li> <li>3. Advanced Physical Chemistry Experiments: By Gurtu &amp; Gurtu</li> </ul>									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	1	1		2	1	1	2	1
CO2	3	1	1	3	1	1		2	1	1	2	1
CO3	3	1	1	3	1	1		2	1	1	3	1
CO4	1	1	1	3	1	1		2	2	1	2	1

Course	Т	itle of the	Program	Core	Tota	al Number c	of contact ho	urs	Credit			
Code		course	(PCR		Lecture	Tutorial	Practical	Total				
			Electiv		(L)	(T)	(P)	Hours				
	-		(PEL	/		_						
CYS552		uantitative	PCF		0	0	4	4	2			
		timation of tal ions in	(Practi	cal)								
		Mixture										
P		quisites	Cou	irse As	sessment n	nethods: [Co	ontinuous ev	aluation (	CE) and			
-		4				nd assessm		(				
	١	NIL				CE+E	ĒA					
Course		CO1: Basic	concepts o	of quar	ntitative estir	nation						
Outcomes	6		CO2: Understand to evaluate the estimation of ion mixture									
		CO3: Understand the fundamental, scientific basis, preparation of sample										
		sampling m										
Topics					and Mn(II)							
Covered			•	• •	. ,		Fe(III) and C	. ,				
		•	•	try: CaCO ₃ and MgCO ₃ in mixture; Mg(II) and Zn(II) in mixture								
		•	•			•	e and phospl					
		4. Analysis	of four cor	npone	nts mixture	(Al ⁺³ , Fe ⁺³ ,	Co ⁺² , Ni ⁺² )					
		5. Gravime	tric estimat	tion of	Ni(DMG) ₂							
			Some m	ore ex	periments a	s decided b	y the Instruc	tor.				
Text Boo	oks,	1. An Adv	anced Cou	irse in	Practical C	hemistry by	Nad, Ghosa	al and Mo	hapatra,			
and/or			entral Book	0		_						
reference				ctical (	Chemistry fo	or Degree (	Classes (Vol	l & II) k	y R. C.			
material		Bhattac		ohomia	try by Ables	valia Diagra	and Culati					
		<ol> <li>College Practical chemistry by Ahluwalia, Dingra and Gulati.</li> <li>Vogels textbook of quantitative chemical analysis By J. Mendham, R. C.</li> </ol>										
					D. J. Barne			menunan	i, ix. O.			
						•	the Examina	tion of W	ater and			
			• • •	,			tion, Americ					
		Associa	ation,Water	Pollut	ion Control	Federation,	Washington	DC.				

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	2	3	1	2		2	3	2	3	1
CO2	3	3	2	3	1	2		1	3	2	3	1
CO3	3	3	2	3		2	1	2	3	2	3	1

Course	Title of the	Program Core	Total	number o	f contact he	ours	Credit					
code	course	(PCR)/Electives	Lecture	Tutorial	Practical	Total						
		(PEL)	(L)	(T)	(P)	hours						
CYS553	Quantitative	PCR (Practical)	0	0	3	3	2					
	Analysis of											
	Organic											
	Samples											
Pre	-requisites	Course Assess				aluation	(CE) and					
	NIL		end a	assessme CE+EA	· /·							
Course		a about the m	othodology	-			of organic					
outcomes		<b>CO1</b> : A basic idea about the methodology of quantitative analysis of organic compounds.										
outcomes	<b>CO2</b> : Concept about the uses of reagents and solvents for quantitative analysis of											
	organic compounds											
	CO3: The uses of t		analysis fo	or importar	nt compour	nds						
Topics	1. Estimation of orc				•							
covered	2. Estimation of rec	lucing sugar by Fe	elhling's so	olution.								
	3. Estimation of vita	• • •	•									
	4. Estimation of ph	,	,									
	5. Estimation of pro	•										
	6. Analysis of orgai	•										
	7. Analysis of pepti	• •										
	8. Estimation of C,	•	•		by CHNS :	analyzer						
Text		•		•	5, 011101	201						
Books,	<ol> <li>Textbook of Practical Organic Chemistry by Vogel</li> <li>Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis</li> </ol>											
and/or	by Ahluwalia	i laoliour organio	Shormoury	···opulu								
reference	3. An Advanced Course in Practical Chemistry by A. K. Nad, B. Mahapatra & A.											
materials	Ghoshal											

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	2	2	2	3	2	2	2	3	2	3	3
CO2	2	2	3	3	2	2	3	2	3	1	3	3
CO3	3	3	3	2	1	3	2	3	2	2	3	3

Course	Title of the	Program Core	Tota	al Number (	of contact h	ours	Credit					
Code	course	(PCR)/ Electives(PEL)	Lecture	Tutorial	Practical	Total						
		LIECTIVES(FLL)	(L)	(T)	(P)	Hours						
CYC601	Basics of Photochemistry, Spectroscopyan dGroup Theory		3	1	0	4	4					
Р	re-requisites	Course Asses		thods [Cont d end term	•	), mid-terr	m (MT)					
	NIL		CA+MT+ET									
Course	-	CO1: Physical understanding of photochemistry and photophysical proces										
Outcomes	³ <b>CO2</b> :Fundamen	<b>CO2</b> :Fundamentals of different molecular spectroscopy.										
	CO3: Introduction	CO3: Introduction to symmetry and concept of point group.										
Topics	Photochemistr	y:					(12 L)					
Covered	processes, rea equivalence, F Jablonsky diagr	law and its applic ctions of electro Franck-Condon p am, Factor affect emission spectroso	nically ex principle, ing fluores	cited spec fluorescen scence, que	cies; law ce and j enching, ba	of photo phosphore sic techn	chemical escence,					
			Jopy, Conc									
Basic mechanism of spectroscopy, Elementary idea of rotational spectroscop Classification of molecules according to moment of inertia, Rotational quantu number, rotational energy levels, selection rule, Introduction to vibration spectroscopy, energy levels, selection rule, Morse potential. Introductionto the												
	Basic mechanis Classification o number, rotatio	m of spectrosco f molecules acco onal energy leve nergy levels, sele	py, Eleme rding to r els, selec	entary idea noment of tion rule,	inertia, Ro Introductio	n to vil	quantum prational					
	Basic mechanis Classification o number, rotatio spectroscopy, e	m of spectrosco f molecules acco onal energy leve nergy levels, sele oscopy.	py, Eleme rding to r els, selec	entary idea noment of tion rule,	inertia, Ro Introductio	n to vil	roscopy, quantum prational					
	Basic mechanis Classification o number, rotatio spectroscopy, e electronicspectro <b>Symmetry and</b> Introduction of Irreducible repre	m of spectrosco f molecules acco onal energy levels nergy levels, sele oscopy. group theory: symmetry and po sentation and cha	py, Eleme rding to r els, selec ection rule pint groups racter table	entary idea noment of tion rule, e, Morse p s, symmetr e, Few app	inertia, Ro Introductio otential. Int y operation	otational of n to vil roduction s. Reduc	roscopy, quantum prational to the (12 L) ible and					
	Basic mechanis Classification o number, rotatio spectroscopy, e electronicspectro <b>Symmetry and</b> Introduction of Irreducible repre- oks, 1. Modern m	m of spectrosco f molecules acco onal energy levels nergy levels, sele oscopy. group theory: symmetry and po sentation and cha olecular photoche	py, Eleme rding to r els, selec ection rule pint groups racter table mistry by I	entary idea noment of tion rule, e, Morse p s, symmetr <u>e, Few app</u> N. J. Turro	inertia, Ro Introductio otential. Int y operation lications of s	otational of n to vil roduction s. Reduc	roscopy, quantum prational to the (12 L) ible and					
and/or	Basic mechanis Classification o number, rotatio spectroscopy, e electronicspectro <b>Symmetry and</b> Introduction of Irreducible repre- oks, 1. Modern m 2. Fundame	m of spectrosco f molecules acco onal energy levels, sele oscopy. group theory: symmetry and po sentation and cha polecular photoche ntals of molecular	py, Eleme rding to r els, selec ection rule mint groups racter table mistry by l spectrosco	entary idea noment of tion rule, , Morse p s, symmetr e, Few app N. J. Turro opy by Ban	inertia, Ro Introductio otential. Int y operation lications of s well	otational of n to vil roduction s. Reduc	roscopy, quantum prational to the (12 L) ible and					
	Basic mechanis Classification o number, rotatio spectroscopy, e electronicspectro <b>Symmetry and</b> Introduction of Irreducible repre- oks, 1. Modern m 2. Fundame 3. Fundame	m of spectrosco f molecules acco onal energy levels nergy levels, sele oscopy. group theory: symmetry and po sentation and cha olecular photoche	py, Eleme rding to r els, selec ection rule mistry by I spectrosco nistry by R	entary idea noment of tion rule, s, Morse p s, symmetr <u>e, Few app</u> N. J. Turro opy by Ban ohatgi-Muk	inertia, Ro Introductio otential. Int y operation lications of s well herjee	otational of n to vil roduction s. Reduc	roscopy, quantum prational to the (12 L) ible and					

## SIXTH SEMESTER

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	1	1	1	3	1	1	1	1
CO2	3	3	1	2	1	1	1	3	1	2	2	2
CO3	3	3	1	2	1	1	1	3	3	1	1	2

Course	Title of the	Program Core	Tot	al Number	of contact h	ours	Credit					
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P)	Hours						
		(PEL)										
CYC602	Coordination Chemistry	PCR	3	1	0	4	4					
Pr	e-requisites	Course Ass	sessment r	nethods [C	ontinuous (C	CT), mid-te	rm (MT)					
	•				sment (EA)							
	NIL			CA+M1								
Course		pts of coordinatio	•	•	ypes and isc	omerism						
Outcomes	S CO2: Theori	es of bonding (e.	g. VBT, CF	T, MOT)								
	CO3: Applic	ation of CFT an	d MOT to	explain th	e spectroso	copic and	magnetic					
	properties of	ⁱ metal-ligand con	nplexes.									
	CO4: Spectr	oscopic Term syr	nbols, Org	el diagram	and Tanabe	Sugano d	liagram					
		ar dichroism, optic					C C					
		CO6: Electronic spectral properties of Lanthanides and actinides										
Topics		Bloomstrand-Jorgensen's chain theory, Warner's theory										
Covered		double salts an		•	•		ordination					
	•	d evidence of cor	•				(4L)					
						(+∟)						
	Clossificatio	o of Ligondo	Innor moto	ullia aamal	ov Doly n	uoloor or	bridged					
		n of Ligands,		•	•	iucieal of	•					
	complexes,	Nomenclature of	coordinatio	on compour	Ids		(4L)					
		omerism and sto stereoisomerism,		•			rmational (4L)					
	crystal field CFT and oc and square	bonding: Valence splitting paramete tahedral complex pyramidal comple distortion, CFT ar	er, pairing kes, CFT a exes, Tetr	energy and and tetrahe agonal dist	d controlling dral comple ortion, in oc	the pairing exes, CFT etahedral s	g energy, and TPB ymmetry,					
		bital Theory of O nical series and ne			•	e planer co	mplexes,					
		pectra of transit es, Relaxation of etric bands.		-	• •		-					
	Spectroscop	pic term symbols, Orgel diagram, examples, limitation of orgel diagram. (5L)										
	Tanabe Sag bands.	ano diagram, Ch	arge Tran	sfer spectra	a, Intervalen	ce electro						
	Circular dich	roism, optical rota	atory dispe	ersion, cotto	on effect.		(3L)					
	Electronic sp	pectra of lanthanio	de and act	inide compl	exes.		(2L)					

Text Books,	
and/or	2) Fundamental concept of Inorganic Chemistry, vol 4 & 5, Asim K. Das, CBS
reference	publishers & distributors
material	3) Inorganic Chemistry, Huheey, Kieter, kieter, Medhi, Pearson education
	<ol> <li>Inorganic chemistry, Shriver &amp; Atkins, Oxford</li> </ol>
	5) Concept and models of inorganic Chemistry, Douglas, Mcdeniel, Alexander,
	Wiley IndiaPvt. Ltd.
	6) Concise inorganic chemistry, Lee, Wiley IndiaPvt. Ltd.
	7) Inorganic Chemistry by Housecroft and Sharp.
	8) Principles of Inorganic Chemistry by B. W. Pfennig

	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	2	1	2	3	3	2	1	1
CO2	2	2	3	2	2	2	2	3	3	1	1	1
CO3	2	3	3	2	2	3	2	3	3	3	1	1
CO4	2	2	3	2	2	3	2	3	3	2	1	1
CO5	3	2	3	2	2	3	2	3	3	3	1	1
CO6	3	2	3	2	2	3	2	3	3	3	1	1

Course	Titleofthecourse	Program	TotalNur	nberofcont	acthours						
Code		Core(PCR)/Ele ctives(PEL)	Lecture(L )	Tutorial (T)	Practical( P)	TotalH ours	Credit				
CYC603	Reagents inOrganicSynth esis	PCR	3	1	0	4	4				
Р	re-requisites	CourseAssessmentmethods[Continuousassessment (CA),mid- term(MT)andendterm(ET)]									
	NIL		CA+MT+ET								
CourseOu tcomes	r particularcompor CO2:Howthebette CO3:Roleofspecif fromsubstrateto p CO4: Learn abour yield.	<ul> <li>CO1:Abasicidea</li> <li>onsynthesisoforganiccompoundshasbeenincorporatedusingsomespecificreagentsfo</li> <li>r particularcompoundsynthesis.</li> <li>CO2:Howthebetteryieldcouldbeobtained,theirstrategyhasbeenhighlighted.</li> <li>CO3:Roleofspecificreagentsandcatalystsincludingmechanismintheirtransformation</li> <li>fromsubstrateto productsisincluded for their step bystepsynthesis.</li> <li>CO4: Learn about the organic reaction mechanism and the role of reagents for better</li> <li>yield.</li> <li>CO5: Proper choice of solvent for the better yield and Industrial application for</li> </ul>									

CU	JRRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
TopicsC overed	Some important reactions with reagents: Aromatic electrophilic (Friedel-Craftreaction) and nucleophilic substitution reactions, Cine substitution reactions,AldolandMichaelcondensationreactions,Robinsonannulationreaction;Synthe sisofbio-moleculeslikesteriodOestrone- 1,±ZearalenoneandIsonotkatoneviaRetrosynthesis. (9L)
	Protectionanddeprotectionoffunctionalgroups;Ring expansion and ring contraction reactions; Regio-selective and enantio-selective reactions controlled by special reagents, Assymmetric synthesis byOxazolinederivatives,bis-lactoneetherbasedchiralauxiliary.(9L)
	Special reagents and reactions: Barton reaction, Wittig reaction; Peterson'ssynthesis(olefination);2,3-dichloro-5,6-dicyano- 1,4benzoquinone(DDQ);Umpolung reactivity (1,3-Dithianes); Dicyclohexyl- carbodiimide (DCC); OsO ₄ ;Woodward and Prevost hydroxylation; SeO ₂ ; Phase transfer catalyst, purplebenzene,cryptatesandclathrochelates;Wilkinsoncatalyst;hydroformylationreactio nsorOxoreactions;Sapiroreaction;Favoriskireactions; Hoffmann-Löffler reaction; Baker's yeast (enzymatic reduction) andGilmanreagents. (9L)
	Specialreagentsusedinoxidationandreductionorganictransformationreactions: Oxidation reaction: CrO ₃ , pyridine complex, Mn(IV) oxide,RuO ₄ ,Sharplessepoxidation,Moffatoxidation,Swernoxidation,Dess- Martinperiodinaneoxidation.Reduction reaction: hydride transfer reagents: DIBAL;Na(CN)BH;Trialkylborohydrides;trialkyltinhydride;Lowvalenttitanium(II)oxide,dii mide. (9L)
Text Books,and/ orreference material	SuggestedTextBooks: (i)ModernMethodsofOrganicSynthesis4thEdition,W.CarruthersCambridgeUniversityPr ess (ii) ReactionMechanisminOrganicChemistry:S.M.MukherjiandS.P.Sinha;MacmillanIn
matorial	<ul> <li>(ii) Acaditor McChansimile Iganicon enistry. S. W. Makherjiandoli - Simila, Machina in dia PvtLtd.</li> <li>(iii) Organicsynthesis Through Disconnection Approach: P. S. Kalsi</li> <li>(iv) Modernsynthetic reactions by H.O. House.</li> <li>(v) Principles of Organic synthesis: R.O.C. Norman and J.M. Coxon; CRCPress</li> </ul>

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	3	2	2	3	3	2	3	2
CO2	2	3	3	3	2	2	3	2	3	3	2	2
CO3	3	3	3	2	1	3	2	3	2	2	1	2
CO4	2	3	1	3	2	2	3	2	1	2	1	2
CO5	3	1	2	1	3	2	2	3	2	1	1	3

_		M AND SYLLAB					
Course	Title of the	Program Core			of contact ho		Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
HSC631	Economics	PCR	3	0	0	3	3
	and						
	Management						
	Accountancy						
Pr	e-requisites	Course Ass			ntinuous ass		(CA), mid-
	NIL		tenn	CA+MT	end term (ET	)]	
				CATINI	<b>⊤∟</b> I		
Course		eviewbasiceconom			S		
Outcomes		ointroducestudents					carryingout
		analysis of differen					
	CO3:	Toeducateth					
		ofatypicalmanufacti todeterminingthepi		luct, anei	ngineering	project	orservice
Topics		Economics	iceoner.				
Covered		Microeconomics					
	Unit 1:			pts			(2 L)
	Unit 2:						(3 L)
	Unit 3:						
	Unit 4:			tures: Perfe	ect Competit	ion	(3 L)
	Unit 5:						(1 L)
	Unit 6:	General Equi	librium &vve	elfare Econo	omics		(2 L)
	Group B:	Macroeconomics	6				
	Unit 1:				ory		(2 L)
	Unit 2:						(3 L)
	Unit 3:				f Income		(4 L)
	Unit 4: Unit 5:						(2 L) (2 L)
	Unit 6:		• •				(2 L)
		Output, 1 100					
		Accountancy	<b>.</b>				(0.1.)
	Unit 1:				N N		(2 L)
	Unit 2: Unit 3:	,					(1 L)
	Unit 4:	<u>, , , , , , , , , , , , , , , , , , , </u>	JUKS UI ACC		Jer)(3 L)		(2 L)
	Unit 5:		iliation State	ement			(1 L)
	Unit 6:						(2 L)
	Unit 7:	Final Account	ts				(2 L)
Text Bo	ooks, Suggeste	ed Text Books:					
and/or		Economics					
reference		Microeconomics					
material		yiannis: Modern Mi		ics			
		a and Miller: Micro					
	-	aSen: Microeconor		· · ·	cations		
		&Rubenfeld: Micro					
	-	Microeconomics Branson: Macroeco		hoory and F	Policy (2nd a	4)	
		lankiw: Macroecon		•	• •	u)	
		sh and Fisher: Ma					

4. SoumyenSikder: Principles of Macroeconomics

#### PART 2: Accountancy

- 1. Gupta, R. L. and Radhaswamy, M: Financial Accounting; S. Chand & Sons
- 2. Ashoke Banerjee: Financial Accounting; Excel Books
- 3. Maheshwari: Introduction to Accounting; Vikas Publishing
- 4. Shukla, MC, Grewal TS and Gupta, SC: Advanced Accounts; S. Chand & Co.

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	-	-	1	-	-	3	-	-	3	2	1	-
CO2	3	2	-	1	-	2	-	2	-	-	3	1
CO3	-	-	-	-	1	-	3	-	-	-	2	-

Course	Title of the	Program Core	Tot	al Number	of contact h	ours	Credit			
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives	(L)	(T)	(P)	Hours				
		(PEL)								
	Artificial	PCR	3	0	2	5	4			
	Intelligence									
CSC631	and									
	Machine									
	Learning									
	Pre-requisit	es	Co	Course Assessment methods (Continuous						
			eva	evaluation (CE) and endassessment (EA))						
Basic Co	ncepts of Probabi	lityand Statistics,	CE+EA							
Kno	owledge of Algorith	nm analysis								
Course	CO1: Identif	y problems where	artificial ir	ntelligence (	AI) techniqu	les are ap	olicable			
Outcomes	s CO2: Under	stand to apply sea	arch strate	gies to solv	e the proble	ms.				
	CO3: Princip	oal models used ir	n machine	learning an	d apply ther	n in machi	ne			
	learning to a	learning to appropriate problems								
	CO4: Formu	CO4: Formulate valid solutions for problems involving uncertain inputs or								
		/ using decision m			-	-				
	CO5: Under	standing different	supervise	d and unsu	pervised lea	rning meth	ods.			

CUR	RICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
Topics Covered	<ul> <li>Introduction to Artificial Intelligence (AI): What is Intelligence, Reasoning and Planning, Learning and Adaptation, and interaction with the real world, A briefhistory of AI, Application areas of AI, State of the art. (2 L)</li> <li>Problem solving by search: Problem types, Illustrative search problems; SearchSpace, Search tree; BFS, DFS, UCS; Local search; Hill climbing; Heuristics; A*search (6 L)</li> <li>Knowledge Representation: Propositional, predicate logic, first order logic, resolution and unification (5 L)</li> <li>Reasoning under Uncertainty: Conditional independence representation, exactinference through variable elimination, and approximate inference throughsampling. (5 L)</li> <li>Introduction to Machine Learning: Basic concepts, bias-variance trade off, evaluation metrics etc. (2 L)</li> <li>Supervised Learning: Simple linear regression, multiple linear regression, logistic regression, support vector machine, decision trees, Introduction to artificialneural network. (14 L)</li> <li>Unsupervised Learning: Clustering algorithms, k-means/k-medoid, hierarchicalclustering (6 L)</li> <li>Dimensionality reduction: Principal component analysis. (2 L)</li> </ul>
Topics Covered	<b>Sessional experiments:</b> Study of PROLOG programming language to implementdifferent search techniques, Implementation of different machine learningtechniques (linear and logistic regression; Decision Trees; Support VectorMachine; artificial neural network; Clustering techniques) by programming inPython
Text Books, and/or reference material	<ul> <li>Text Books:</li> <li>1.Artificial intelligence: A Modern Approach- Stuart Russell, Peter Norvig, Prentice Hall, Fourth edition, 2020</li> <li>2. Tom M. Mitchell, "Machine Learning", McGraw Hill Education, International Edition, 2010</li> <li>Reference Books:</li> <li>1. Elaine Rich, Kevin Knight and Shivashankar B. Nair, "Artificial Intelligence", Tata McGraw Hill, 3rd Edition 2017.</li> <li>2. Ethem Alpaydin, "Introduction to Machine Learning", Third Edition, MIT Press, 2014</li> </ul>

Course	Title of the	Program	Tota	al Number o	f contact hou	urs	Credit			
Code	course	Core (PCR)/	Lecture	Tutorial	Practical	Total				
		Electives	(L)	(T)	(P)	Hours				
		(PEL)								
CYS651	Potentiometric	PCR	0	0	3	3	2			
	and	(Practical)								
	Colorimetric									
	Analysis									
F	Pre-requisites	Course As	Course Assessment methods: [Continuous evaluation (CE) and							
			end assessment (EA)]							
	NIL		CE+EA							

CUI	RRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
Course	CO1:Handling spectrophotometer and knowledge on its application.
Outcomes	CO2:Construction of electrochemical cell and measuring cell potential.
	CO3:Application of potentiometric estimation.
	<b>CO4</b> :Development of laboratory skill, data handling and interpretation, error analysis.
Topics	1. Verification of Beer's law
Covered	2. Determination of $E^0$ of quinhydrone electrode
	3. Determination of phosphate concentration in a soft drink
	4. Estimation of dissociation constant of acetic acid potentiometrically
	5. Titration of Mohr's salt solution and determination of formal potential of Fe ³⁺ /Fe ²⁺ system
	<ol> <li>Determination of Solubility product of silver chloride potentiometrically Any other practical as assigned by the Instructor</li> </ol>
Text Books,	1. Instruction manual provided by the Instructor     2. Selected experiments in Physical Chemistry By N.G.Mukherjee
and/or reference material	3. Advanced Physical Chemistry Experiments: By Gurtu & Gurtu

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	1	2	-	2	1	2	2	1
CO2	3	1	1	3	1	2	-	2	1	2	2	1
CO3	3	1	1	3	1	2	-	2	1	2	3	1
CO4	1	1	1	3	1	1	-	2	2	1	2	1

Course	Title of	the course	Program	Tota	al Number o	of contact ho	ours	Credit		
Code			Core (PCR)/	Lecture	Tutorial	Practical	Total			
			Electives	(L)	(T)	(P)	Hours			
			(PEL)							
CYS652	Analys	sis of Ores	PCR	0	0	4	4	2		
	and	l Alloys	(Practical)							
Pre-requisites			Course Asses	Course Assessment methods: [Continuous evaluation (CE) and						
				end assessment (EA)]						
	NIL			CE+EA						
Course O	utcomes	CO1: Basic	O1: Basic concepts of Ores and alloys							
		CO2: Under	rstand to evaluate the analysis of different ores and alloys							
		CO3: Unde	erstand the fundamental, scientific basis, preparation of sample,							
		sampling me	ethod and analy	tical metho	ds.					
Topics Co	overed	Analysis of								
		a) High s	) High speed steel; b) Dolomite; c) Brass; d) Bronze; e) Bauxit							
		Pyrolusite;								

Text Books,	1.	An Advanced Course in Practical Chemistry by Nad, Ghosal and
and/or reference		Mohapatra, New Central Book agency.
material	2.	A Manual of Practical Chemistry for Degree Classes (Vol I & II) by R. C.
		Bhattacharya,
	3.	College Practical chemistry by Ahluwalia, Dingra and Gulati.
	4.	Vogels textbook of quantitative chemical analysis By J Mendham, R. C.
		Denney, M. Thomas and D. J. Barnes, Pearson India.

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	1	2		2	3	2	3	1
CO2	3	3	2	3	1	2		1	3	2	3	2
CO3	3	3	2	3		2	1	2	3	2	3	2

Course	Title of the	Program Core	Total	number o	f contact he	ours	Credit		
code	course	(PCR)/Electives	Lecture	Tutorial	Practical	Total			
		(PEL)	(L)	(T)	(P)	hours			
CYS653	Single Step	PCR (Practical)	0	0	4	4	2		
	Organic								
	Synthesis								
Dro	Laboratory		ont mothe	day [Canti		uction ((			
Pie	-requisites	Course Assessment methods: [Continuous evaluation (CE) and end assessment (EA)]							
	NIL			CE+E					
Course	CO1: To reach a	argeted product th	nrough sin	gle step i	eaction pro	ocess us	sing suitable		
outcomes	reagents and optin	•	•		·		0		
	CO2: To learn sep	aration and purifica	ation of pro	oducts					
	CO3: To learn put	rification technique	s, like ph	ase trans	fer, crystall	ization,	GC-MS and		
	other spectroscopi	c method will be a	dopted						
	CO4: To learn t	•		•	•		st common		
	spectroscopic met								
	CO5: To learn how				mum uses	of solve	nt, reagents		
		eat and electricity (Green chemistry).							
Topics	1. Acetylation o	f primary amine.							
covered	2. Base mediate	ted Aldol condensation reaction.							
	3. Rearrangem	ent of benzyl to be	nzylic acid						
	4. Pechmann c	ondensation for co	umarin syı	nthesis.					
	5. Bromination	of acetanilide.							
	6. Synthesis of	dihydropyrimidinor	ne.						
	7. Preparation of	of benzopinacol fro	m benzop	henone.					
	8. Synthesis of	pinacolone from pincaol via rearrangement reaction.							
Text Bo		xtbook of practical organic chemistry							
and/or refere		oractical chemistry				<b>-</b> • • •			
materials	3. An Advanc Ghoshal	ed Course in Prac	ctical Chei	mistry by	A. K. Nad,	B. Mah	apatra & A.		

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
C01	3	3	1	3	3	3	1	2	3	2	3	3
CO2	3	3	3	2	2	3	1	3	2	2	3	3
CO3	3	2	3	2	2	2	2	3	2	3	3	3
CO4	3	3	3	2	2	3	3	3	2	3	3	3
CO5	3	3	3	3	2	3	3	3	2	3	3	3

0		Due en en	<b></b>	1. N. L	f		Onelli			
Course Code	Title of the course	Program Core (PCR)			of contact ho		Credit			
Code	course	/ Electives	Lecture	Tutorial	Practical (P)	Total Hours				
		(PEL)	(L)	(T)	(Г)	nouis				
MSC731	Principles of	PCR	3	0	0	3	3			
Dua	Management		_	_	_	_	_			
Pre	-requisites			ethoas [Co Ind end Tei	•	(CA), mid-term (M				
				CA+MT						
Course	CO1:To make	budding ongi	incore ow			aomont	functions			
Outcomes	required for any		INCEIS aw	ale ul va	nous mana	igement	TUTICUOTIS			
Outcomes	CO2:To impart		n various	tools and	technique	s applied	d by the			
	executives of ar	•					,			
	CO3:To make			e of manag	jerial functio	on so tha	t it would			
	help for their pro									
		<b>CO4</b> :To impart knowledge on organizational activities operational and stra both in nature								
		l area of	manader	nent like						
	<b>CO5</b> : To impart knowledge on each functional area of management Marketing, Finance, Behavioral Science and Quantitative Techniques a									
	0	decision science								
Topics	UNIT I: Man	<b>Q</b>					Business			
Covered	environment-									
	Management fu									
	Planning- Steps BCG matrix in o	•		ental analy	sis with Svv	OT, App	lication of			
				ues used	in manage	ment: Fo	recasting			
		<b>II:</b> Quantitative tools and techniques used in management: Forecasting niques, Decision analysis. (6 L)								
	UNIT III: Creating									
	marketing, Co			mentals,	Segmentatio	on, Targ	geting &			
	Positioning, Pro UNIT IV: Bel			of individu	ual: Mativa	tion Lo	adarahin			
	Perception, Lea		gement				au <del>c</del> isnip,			
	UNIT V: Profes	• • •	Introductio	n to Profe	ssional ethi	cs, Moral	s, values			
	and Ethics, Ethi									
Text Book	•	Management 1	5th Edition	, Philip Kot	ler and Kelv	/in Keller	Pearson			
and/or	India									
reference material	•	nt Principles, I		•	ce, first edit	ion, Anil	Bhat and			
material	•	r, Oxford Highe								
	3. Organizatio Hall India	<ol> <li>Organizational Behavior,13th edition, Stephen P Robbins, Pearson Prentice Hall India</li> </ol>								
		4. Operations Management, 7th edition (Quality control, Forecasting), Buffa & Sarin, Willey								
	5. A.C. Fern	•	ss Ethice	& Corp	orate Gove	rnance	Pearson			
	Education2									

### SEVENTH SEMESTER

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	-	2	-	2	1	1	3
CO2	-	-	-	-	-	-	1	-	1	-	-	3
CO3	-	-	-	-	-	-	1	2	2	2	2	3
CO4	-	-	-	-	-	-	1	2	2	1	1	3
CO5	-	-	-	-	-	-	2	2	2	2	1	3

CourseC ode	Titleofthecourse	ProgramCore( PCR)/Elective	То	talNumber	of contactho	urs	Credit		
oue		(PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours			
CYC701	Quantum Chemistry	PCR	3	1	0	4	4		
Pr	e-requisites	Course Asses		thods [Con d end Term	•	), mid-ter	m (MT)		
	NIL	CA+MT+EA							
CourseOu omes	microscopic(qua CO2:ApplyingSc CO3: To appli atom) in spheric CO4:To analyze quantization of e CO5: To unders angular moment CO6: To apply polynomials etc. Introduction to The dawn of qu spectra, vibratio principle, Time-i Postulates of C Fundamental wavefunctions commutation rel Simple applica Particle in a 1D The Harmonic Energy levels, In Particle on a sp Rigid rotator mo spherical harmo The Hydrogen The Schrodinge radial wave equ	ntum) world, quar chrödingerwaveeq y Schrödingerwa al polar coordinate e the vibrational energy concept. stand the mathem um, uncertainty por mathematical of to problems of q Quantum Mechan operations of and probabilistic ations, time-depet tions (exactly so & 3D box, particle Oscillator: nfrared spectra of ohere (rigid rotat odel of a diatomic of and solution of a diatomic of the spectra of the spectra of the spectra of the spectra of the spectra of the spectra of t	ntization of uation to m veequation es. , rotationa atical back rinciple, Pa concepts ( <u>uantum me</u> <b>anics:</b> lack body tals, wave ödinger eq <b>ics:</b> quantum c represe ndent Schr <b>Ivable pro</b> e in a box o diatomic m <b>or):</b> molecule, E	nodelquanti for one I spectra (ground of juli's exclus vectors, n echanics radiation, p particle du uation mechanic ntation, o odinger eq <b>blems):</b> f finite dept nolecules, w Energy leve	ave particle of umsystems. electron sy of diatomic the concep- sion principle natrix, diffe photoelectric ality, Heiser cs, eigenv perators, a uation (51 th, Tunnellin vavefunction els, rotation- gy levels, H on electron	rstem (H c molecu t of elect rential e c effects, nberg und ralue pr average L) ng effect. ns vibration I atomic	ydrogen lles form ron spin, quations, Atomic certainty (5L) roblems, values, (3L) (3L) (3L) spectra, (4L) spectra,		
		tum and its meas efunction with s		exclusior	n Principle		(2L)		

CUR	RICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	Electron spin, spin-orbit interaction, Atomic Term Symbols, The Schrodinger equation for a Helium atom (3L)
	Approximation methods: Basic principles of variation and perturbation methods. (1L)
	Mathematical Concepts:Representation of complex number, Euler's formula, series and limits, average values etc.(2L)
	Linear algebra in quantum mechanics and symmetry operation: Vector space, determinants, matrix and liner transformations, orthogonal transformation, symmetry operations, matrix eigenvalue problem etc. (3 L)
	<b>Partial differential equation:</b> general solution, separation of variable, particle in a rectangular box, in a circle box, hydrogen atom, vibrating string, normal modes of vibration. (3 L)
	<b>Polynomials in quantum chemistry:</b> The Legendre equation, Legendre polynomials, associated Legendre polynomial, orthogonality and normalization, Hermite equation, Hermite Polynomials. Laguerre equation, associated Laguerre functions, spherical harmonics. (3L)
	<b>Function in three dimension:</b> Spherical polar coordinates, atomic orbitals, volume integrals, density functions, etc. (2 L)
Text Books,	1. Quantum Chemistry: A Molecular approach by Donald A. McQuarrie
and/or reference	2. Introductory quantum chemistry by A. K. Chandra
material	<ol> <li>Molecular Quantum Mechanics By Atkins and Friedman, Oxford</li> <li>Quantum Chemistry by Ira L. Levine</li> </ol>

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	2	2	3	3	2	2	1	1
CO2	3	2	3	2	2	2	3	3	2	2	1	1
CO3	3	2	3	2	2	2	3	3	2	2	1	1
CO4	3	3	3	2	2	3	3	3	2	3	1	1
CO5	3	3	3	2	2	3	3	3	2	3	1	1

Course	Title of the course	Program	Tota	al Number o	of contact ho	ours	Credit		
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total			
		Electives	(L)	(T)	(P)	Hours			
		(PEL)							
CYC702	Inorganic Reaction	PCR	3	1	0	4	4		
	Mechanisms and								
	Magnetochemistry								
P	re-requisites	Course Assessment methods [Continuous (CA), mid-term (MT)							
		and end Term (ET)]							
	NIL	CA+MT+EA							
Course	CO1: Basic concept	ot of inorganic re	action med	hanism as	sociated wit	h octahe	dral and		
Outcomes	square planar comp	lexes.							
	CO2: Types of electron transfer reactions of the complexes including the detail								
	mechanism								
	CO3: Solving the pr	oblems related to	o Marcus th	neory.					
	CO4: Types of mag	netic substances	and their r	nagnetic pr	operties.				

C	CURRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	<ul> <li>CO5: Quantum numbers and origin of magnetic moments; microstates and derivation of Russel-Saunders Terms for various electronic configuration, Lande Interval Rule, Hole formalism and equivalency.</li> <li>CO6: Determination methods of magnetic susceptibility of various metal complexes multiplet widths and derivation of various equations to determine magnetic moments orbital magnetic moment quenching, concept of high-, low-, intermediate- and admixed.</li> </ul>
Topics Covered	spin state and their interactions.Stoichiometric mechanism, second order limiting rate constant, base hydrolysis, Effectsof non-leaving ligands, proton exchange, activation parameters.(5 L)Stereochemistry of octahedral substitution reactions, racemisation reaction (Bailar twist and Ray –Dutt twist)Square planar complexes: Ligands substitution reactions, General features, significance of rate law, effect of entering and leaving ligands, The trans effect, theories of trans effect, grounds state effects, transition effect, steric effects of non-leaving ligands 
	(4L Definition of magnetic properties, types of magnetic bodies, sources of paramagnetism orbital and spin effects, Diamagnetism and Pascal's constant, diamagnetic correction o ligands and metal complexes.(3 L) Quantum numbers and vectors, Mutual inclination of electron orbits and resultan vectors, Russel-Saunders coupling and j-j coupling, Ground State Term Symbol and Hund's rules. (2L) Microstates and derivation of Russel-Saunders Terms for $p^2$ , $d^2$ and pd configuration Spin-orbit interaction (2L) Lande Interval Rule, Hole formalism and equivalency, Hund's third rule and energies o J levels, Russel-Saunders coupling of d2 system and j-j coupling (3L) Thermal energy and magnetic property, Magnetic moments for different multiplet widths i.e for multiplet width large compared to KT, small compared to KT and comparable to KT (3L) Magnetic properties of Lanthanides, first transition series metal ions and actinides.
	Determination of magnetic susceptibility: Gouy's method, Faraday's method, NMF method and their advantage and disadvantages, magnetic anisotropy. (3L) Magnetic properties of complexes with different geometries based on crystal field model, spin-state equilibrium in octahedral stereochemistry, magnetic properties of high-spin, low-spin, intermediate-spin and admixed-spin state concept. (2L) Quenching of Orbital magnetic moment by crystal field, loss of orbital degeneracy and quenching of orbital magnetic moment, valence bond and crystal field interpretation of magnetic moment, shortcomings of crystal field theory. (2L)
Text Books, and/or reference material	<ol> <li>Inorganic chemistry, Shriver &amp; Atkins, Oxford.</li> <li>Concept and models of inorganic Chemistry, Douglas, Mcdeniel, Alexander, Wiley</li> <li>Inorganic Chemistry, Huheey, Kieter, kieter, Medhi, Pearson education</li> <li>Concise Inorganic chemistry, Lee, Wiley IndiaPvt. Ltd</li> <li>Elements of magnetochemistry by Dutta &amp; Shyamal</li> <li>Mechanisms of Inorganic Reactions by Fred Basolo and Ralph Pearson</li> </ol>

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	1	1	1	3	3	1	1	1
CO2	3	1	3	3	1	1	1	3	1	1	1	1
CO3	3	1	3	3	1	1	1	3	1	1	1	1
CO4	3	2	3	2	2	1	3	3	3	3	1	1
CO5	3	2	3	3	2	1	3	3	3	3	1	1
CO6	3	2	3	3	2	3	3	3	3	3	1	1

Course	Title ofthecourse	Program	Т	otalNumber	ofcontacthou	irs	Credit
Code		Core(PCR)/	Lecture(	Tutorial(T)	Practical(P)	TotalH	
		Electives(PEL)	L)			ours	
CYC703	ConceptofOrganicS	PCR	3	1	0	4	4
	ynthesisandAsymm						
	etricSynthesis						
	Pre-requisites	CourseAss			ntinuous asse and term test		CA),mid-
	None			CA+M	Γ+ET		
CourseOu omes	utc CO1: A complete kr compounds has h particularcompounds CO2: How the strategyandcontrolha CO3: Role of spec mechanistic path from CO4: Uses of specifi CO5: Uses of proper	been elaboratel synthesis. better yield c as beenhighlighte cific reagents w m substrate to pro c reagents for ste	y discus of produc d. ith related oducts is in ereo contro	sed using t could d mechanis ncluded for t ol reaction ir	some spe be obtained m in their heir step bys asymmetric	ecific re d, their transform tepreactions synthesis	agentsfor tactics, nationand ons.
TopicsCo			lic Synules	ses, purinca	lion and sepa	lation	
red	00,	Strategy and	d Con	trol; Se	electivity:	chemos	electivity,
	2. Making C homoenolates,ext anionequivalents, complexesofmetal Mukaiyama facialreactivity,Cla aromatic compour Olefinationreactions	allyl anions, s,orgnometallicre aldol isenandDieckma ids, Palladiumcat	specific e eagents,ald cond nncondens	analogues enol equiva doladditiona densation, sation,conju	of enols an alents, Mich ndcondensat col gateaddition,	id enola ael read ion r ntrol	ction, σ- eactions, of
	Wittigandrelatedre ion,carboaluminat	ion,ROMPandRC	MP.	(8L)			
		hemoselectivity,r dtwogroupC–Cdis nitrocompounc mpounds,α,β-	onal g oup-C-Xan eversalofp sconnectio Isinorganio	roup inte dtwogroups oolarity,cyclis ons (typical csynthesis.C	erconversions C- sationreactior examples), u biels-Alderrea	s and ns,amines use of a octions,1,3	order synthesis cetylenes 3-and1,5-

	CURRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	nsonannulation. Ring synthesis: saturated heterocycles synthesis of 3-, 4-, 5-,and6- membered rings,aromaticheterocyclesinorganicsynthesis. (8L)
	4. Classic total synthesis of some natural products: Strategies and synthesis f some classic examples of total synthesis; L-hexoses, Prostaglandines, Longifolene, penicillin, Periplanone etc. (10L)
	5. Asymmetricsynthesis:Controlofstereochemistry,chiralpool,asymmetric induction via reagents and catalysts, kineticresolution,Synthesis of enantiometricallypurecompounds.(8L)
Text Books,and/orr	<ol> <li>OrganicChemistrybyJ.Clayden,N.Greeves,S.Warren&amp;P.Wothers,OxfordUniversityPr ess,2001</li> </ol>
eferencemate rial	<ol> <li>OrganicsynthesisstrategyandcontrolbyP.Wyatt&amp;S.Warren,Wiley,2007.</li> <li>AdvancedOrganicChemistrybyF.A.Carey&amp;R.J.Sundberg,Springer,2007.</li> </ol>
	4. Principles of Organic Synthesis, R.O.C. Norman & J.M. Coxon, Nelson Thrones,1993,CRCPress.
	<ol> <li>OrganicsynthesisbyM.Smith,Elevier,4thEdition,2016.</li> <li>ClassicsinTotalSynthesis:Targets,strategiesandMethodsbyK.C.Nicolaou&amp;E.J. Sorensen,Wiley,1996.</li> </ol>
	7. ModernMethodsinOrganicSynthesisbyW.Carruthers,CambridgeUniversityPress,2004
	8. ProtectiveGroupsinOrganicSynthesisbyT.W.Green&P.G.M.Wuts,Wiley,2002.

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	2	3	2	3	3	3	1	3	2
CO2	3	3	2	3	2	2	3	2	3	3	1	2
CO3	3	2	3	2	1	3	2	3	2	2	1	2
CO4	3	3	2	3	2	1	3	2	1	2	2	2
CO5	2	2	2	1	3	2	2	1	2	2	1	3

CourseC	Titleof thecourse	ProgramCore(	To	Credit					
ode		PCR)/ Electives(PEL)	Lecture( L)	Tutorial( T)	Practical (P)	TotalH ours			
CYS751	Spectrophotoc hemicalAnalys is	PCR(Practical)	0	0	3	3	2		
Pi	re-requisites	Course Assessment methods: [Continuous evaluation (CE) and end assessment (EA)]							
	NIL	CE+EA							
CourseOutc CO1:Basicconceptsofspectrophotometric estimation omes CO2:Learningabouthandlingofspectrophotometerandfluorescencespectrometera theirbasic theory. CO3:Todeveloplaboratoryskillsandtheabilitytoworkindependentlyaswellasin a gro									

C	URF	RICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY									
	<b>CO4</b> :Knowingpresentation,analysisandinterpretationofdata,sourceoferroranderror analysis.										
	<b>CO5</b> : To understand the interconnection betweenexperim foundationandunderlyingtheoretical principles.										
		:Todeveloptheabilityofscientificcommunicationsthroughoralquizzes,writtenreportsa esentations									
TopicsCover ed	<ul> <li>DeterminationofstoichiometryofFerricsalicylicacidcomplexbyJob's method</li> <li>Determinationofindicatorconstantofmethylorange</li> </ul>										
	<ul> <li>DeterminationofconcentrationofCu²⁺andFe³⁺photometricallybytitratingwith</li> <li>Determinationofarsenic(III)andantimony(IV)simultaneouslyina mixturespectrophotometrically.</li> <li>Determinationofmolarextinctioncoefficient</li> <li>Determinationoffluorescencequantumyield.</li> </ul>										
	<ul> <li>Fluorescencequenchingexperiment:determinationofmicellaraggregationnumbe Someadditional experimentsas decidedbythe Instructor.</li> </ul>										
TextBooks,	1.	InstructionmanualprovidedbytheInstructor									
and/orrefer encemateri al	2. 3.	ExperimentsinPhysicalChemistrybyCarlGarland,JosephNibler,DavidShoemaker Practicalsin PhysicalChemistrybyPS Sindhu									
	4.	PracticalPhysicalChemistrybyViswanathan andRaghavan									

	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2				1			1	1	2
CO2	3	3		2	2	3	1	2	2	1	1	2
CO3	3	1				2	1	2	2	1	3	2
CO4	3	1					1			1	1	2
CO5	3	1					1			1	1	2
CO6	3	1					1			1	1	2

Course	Tit	e of the course	Program	Total Nu	mber of co	ntact hours		Credit		
Code			Core	Lecture	Tutorial	Practical	Total			
			(PCR)/	(L)	(T)	(P)	Hours			
			Electives			( )				
			(PEL)							
CYS752	Spe	ctrophotometric	PCR	0	0	3	3	2		
	E	stimation of	(Practical)							
	Cati	ons and Anions								
	Pre-requisites			Course Assessment methods: [Continuous evaluation (CE)						
				and	l end asses	ssment (EA)	]			
	Ν	IIL	CE+EA							
Course		CO1: Basic conc	epts of spect	rophotome	tric estima	tion				
Outcomes <b>CO2</b> : Understand		nd to evaluate the estimation of ion mixture								
(The students CO3: Learning al		bout handling	of spectro	photomete	er					
will maste	will master the CO4: Understand the fundamental, scientific basis, preparation of sar						sample,			
will master the CO4: Understand the fundamental, scientific basis, preparation of sample,										

CUF	RICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
following)	sampling method and analytical methods for water and waste water samples. <b>CO5</b> : Students will also accumulate idea about the permissible limit, present concentration etc. of different environmental impurities.
Topics Covered	Estimation of MnO ₄ ⁻ –Cr ₂ O ₇ ²⁻ mixture Estimation of NO ₃ ⁻ –PO ₄ ³⁻ mixture Estimation of NO ₃ ⁻ –PO ₄ ³⁻ mixture Estimation of Ti ⁺⁴ –V ⁺⁵ mixture Estimation of dissolved oxygen and oxygen demand (BOD and COD) of Environmental Samples. Some more experiments from the followings as decided by the Instructor. (i) Determination of Ni in steel (Gravimetrically) (ii) Analysis of Brass and Aluminum in Bronze (iii) Spectroscopic determination of Iron in Bauxite
Text Books, and/or reference material	<ol> <li>An Advanced Course in Practical Chemistry by Nad, Ghosal and Mohapatra, New Central Book agency.</li> <li>A Manual of Practical Chemistry for Degree Classes (Vol I &amp; II) by R. C. Bhattacharya,</li> <li>College Practical chemistry by Ahluwalia, Dingra and Gulati.</li> <li>Vogels textbook of quantitative chemical analysis By J Mendham, R. C. Denney, M. Thomas and D. J. Barnes, Pearson India.</li> <li>APHA, A, WEF, (1998). Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association,Water Pollution Control Federation, Washington DC.</li> </ol>

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	3	3		3	2	1	1	
CO2	3	2	1	2	1	2	1	3	2	2	1	1
CO3	3	2	3	2		3	3	3	2	2	1	
CO4	3	3	3	3	3	2	1	3	3	3	2	3
CO5	3	2	3	2	3	2	1	3	3	3	3	3

Course	Title of the	Program Core	Total nur	nber of co	ntact hours	0					
code	course	(PCR)/Electives	Lecture	Tutorial	Practical	Total					
		(PEL)	(L)	(T)	(P)	hours					
CYS753	Identification of	PCR (Practical)	0	0	4	4	2				
	Organic										
	Compounds										
	from Binary										
	Mixture										
Pre	e-requisites	Course Assessment methods: [Continuous evaluation (CE) and									
		end assessment (EA)]									
	CYS351		CE+EA								
Course	CO1: To know th	ne principles of s	separation	techniqu	es to read	ch a tai	rgeted pure				
outcomes	separate compone	nt from a binary m	ixture.				-				
	<b>CO2</b> : To become skilled to optimise the uses of solvent obeying the principle of green										
	chemistry.										
	CO3: To know va	arious separation	and purif	ication te	chniques,	like pha	se transfer,				

	CURRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY						
	<ul> <li>crystallization, GC-Mass etc.</li> <li>CO4: To understand the basic concept behind separation process for most common different methodology and their principles like; distillation, sublimation, crystallization etc.</li> <li>CO5: To reach a maximum yield with minimum uses of solvent, reagents and energy like; heat and electricity (Green chemistry).</li> </ul>						
Topics	1. Aniline and benzil (Liquid and solid)						
covered	2. Ethyl acetoacetate and benzoic acid (Liquid and solid)						
	3. Benzil and benzoic acid (solid and solid)						
	4. p-Chlorobenzoic acid and aniline (solid and liquid)						
	5. Cyclohexanone/cyclohexanol and N,N-dimethylaniline (liquid and liquid)						
	In each case, separation and identification of individual components, preparation of derivatives of each component, their purification and characterization shall be performed.						
Text Bo and/or reference materials	<ul> <li>oks, 1. Vogel's Textbook of practical organic chemistry, 5th Edition</li> <li>2. Advanced practical chemistry, 3rd Edition by S. C. Das</li> <li>3. An Advanced Course in Practical Chemistry, 3rd Edition by A. K. Nad, B. Mahapatra &amp; A. Ghoshal</li> </ul>						

Mapping of COs (Course Outcomes	) and POs (Programme Outcomes)
---------------------------------	--------------------------------

POs COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	2	2	1	3	2	2	3	3
CO2	3	3	2	2	2	2	2	3	2	2	3	3
CO3	3	2	3	2	2	2	2	2	2	2	3	3
CO4	3	2	3	2	3	3	1	3	2	3	3	3
CO5	3	3	2	2	3	3	2	3	2	3	3	3

Codo	Titleof thecourse	ProgramCor	Тс	otalNumber	of contactho	urs	Credit	
Code		e(PCR) /Electives(P EL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours		
CYC801	Chemical,Statistical Thermodynamicsan dElectrochemistry	PCR	3	1	0	4	4	
	Pre-requisites	Course Asse			tinuous asse nd term (ET)		CA), mid-	
	NIL			CA+MT	+ET			
tcomes Topics	CO2: To understant itsimplication. CO3: To account analyzethermodynam DiracandBose-Einste CO4:To understat theirinterrelation. CO5:To accountfor fu	for physical nic properties in statistics. andtheionicpro	interpretati of model pertiesinsol	on of par systems v lution,likedif	tition functi with using fusion,migra	ions and Boltzmanr ation,condu	able to n, Fermi [,]	
	Thermodynamics of		lution:					
	Thermodynamicsofid idealbinarysolutions:f ation,fugacityandits d Gibbs-Duhemequatio Margulesequation,eq (3L) Thermodynamicexce	ealandnon- reeenergyande etermination. n,Duhem- uilibriumconsta ssfunctions.Ex	entropyofmi ant,tempera perimentalo	turedepend	lent equ	ilibrium	(4) constar	
	Thermodynamicsofid idealbinarysolutions:f ation,fugacityandits d Gibbs-Duhemequatic Margulesequation,eq (3L)	ealandnon- reeenergyande etermination. on,Duhem- uilibriumconsta ssfunctions.Ex es. <b>mamics:</b> althermodynar Statistics, Trar mono,diatomic Gibb's paradoz n, Debye law. O Statistics, Indi inStatistics and	entropyofmi ant,tempera perimentalo nics,probab slational, F candpolyato c, Sacur-Te Concept of r stinguishab d classical I	turedepend determinatio (3L) bility,ensem Rotational, pmic ideal etrode Equa residual ent ility inbuilt imit of quar	lent equiphofactivityco blesanddistr Vibrational, gas and that ropy. (12 in quantum itum statistic	ilibrium befficientol ibutionlaws (5L) Electronic eir thermo Capacity L) mechani	(4) constar felectroly s, , Nuclea odynamic of solids	

## EIGHTH SEMESTER

	solventinteraction.Ion-dipoleinteraction. (4L) Ion-ion interaction: Debye-Huckel-Onsagar theory of inter-ionic interaction,thicknesso ionicatmosphere.Debye-Huckel limitinglaw. (4L) Ion transport in solution: Fick's first and second law of diffusion, Molecularinterpretation o diffusion, Migration of ion under electric field, Effect ofviscosity and diffusion on ionic migration. Relaxation of ionic atmosphere,Effectof highelectricfield and highfrequencyofionicconduction. (4L) Rate processapproachtowards ionicmigration:Nernst-PlanckFluxequationanditsapplication
	(3L) Transportofionthroughmembrane:Donanequilibrium. (2L)
TextBooks, and/orrefer encemateri al	2. AnintroductiontostatisticalthermodynamicsbyT.L.Hill
	<ol> <li>PhysicalChemistry:ThermodynamicsbyH.Metiu(Taylorand Francis)</li> <li>ChemicalThermodynamics:PrinciplesandApplications;andAdvancedApplicationsby Ott andGoates</li> </ol>

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	2	-	2	3	3	2	2	1	1
CO2	3	-	-	2	-	2	3	3	2	2	1	1
CO3	3	-	2	2	-	2	3	3	2	2	1	1
CO4	3	3	3	2	2	3	3	3	2	3	1	1
CO5	3	-	-	3	1	-	-	-	-	-	-	-

Course	Title	of	the	Program Core	Tota	al Number o	f contact hou	irs	Credit	
Code	course	)		(PCR)/	Lecture	Tutorial	Practical	Total		
				Electives	(L)	(T)	(P)	Hours		
				(PEL)						
CYC802			and nic	PCR	3	1	0	4	4	
Pr	e-requis	ites		Course Asses		ods [Contin IT) and end		ment (CA	), mid-	
	NIL			CA+MT+ET						
Course			•	ledge of s, p and d block organometallics in respect of synthesis, structure						
Outcomes			•	lifferent ligand en						
			0	e of different typ		Ų		compour	nds and	
				rent catalytic cycle						
				ding the role of tra	ace element	ts in health a	and environm	nent, cher	mistry of	
			-	y and its remedy.						
		CO4: Knowledge the structure and function of metalloenzymes and metalloproteins								
				hasis of iron stor	0.0	•				
				n of modern sp	•	tools to e	elucidate the	e active	sites of	
	meta	alloen	zymes	and metalloprote	ins.					

Topics	Gr. I and Gr. II organometallics: synthesis, properties and application. (2 L)
Covered	d –metal organometallics: History, stable electronic configuration, 18 and 16 electron system, electron count and oxidation state, Nomenclature, $\pi$ -acid ligands and lo oxidation states.(3 L)
	Metal carbonyl: Binary carbonyl: synthesis, bonding, spectroscopic characterisation carbonyl compounds. (4 L)
	Substituted carbonyl: phosphine, isocyanide, nitrosyl, dinitrogen, carbenes, hydride and dihydrogen, n1 alkyl, alkenyl, alkynyl, aryl, n2 alkene, alkyne, no conjugateddiene, , butadiene, cyclobutadiene, cyclotetracene, allylligan cyclopentadiene, and cycloheptatriene, Metallocenes: synthesis, reactivity and bondir of ferrocene etc.
	(6 Reactions: ligand substitution oxidative addition and reductive elimination, $\sigma$ -box metathesis, 1,1 migratory insertion, 1,2 insertion, $\beta$ -hydride elimination, Homogeneou catalysis: hydrogenation catalyst, hydro formylation, Wacker oxidation alkenes,asymmetric oxidation, metathesis.(5 L)
	Cage and metal clusters.(3 L)
	<ul> <li>Bio-inorganic:</li> <li>Occurrence and availability of inorganic elements in organisms; essential, beneficiend and trace elements, Synergistic and antagonistic relationship of metal ions, Eleme deficiency and toxicity, Metal poisoning detoxification.(1 L)</li> <li>Biological ligands for metal ions: Nucleobases, nucleotides and nucleic acids (DN RNA) as ligands, tetrapyrrole ligands and other macrocycles (chlorin, corrin), Conce of protein structures: primary, secondary, tertiary and quaternary; Coordination proteins and comments on enzymatic catalysis.(1 L)</li> </ul>
	Cobalamins including vitamin and Coenzyme B12: History and structur characterisation; Reactions of the alkylcobalamins (a) One-electron reduction ar oxidation, (b) Co-C bond cleavage, (c) Mutase activity of Coenzyme B12 and ( alkylation reactions of Methylcobalamins; Model systems and the role of the Apoenzyme.(3 L) Metals at the center of photosynthesis: Total efficiency of photosynthesis; Prima processes in photosynthesis such as (a) Light absorption, (b) Exciton Transport, (
	Charge separation and electron transport (Photosystem-I, Photosystem-II, Z-Scheme Manganese catalysed oxidation of H ₂ O to O ₂ (4 L) The dioxygen molecule, O ₂ Uptake, transport and storage: Molecular and chemic properties of O ₂ , Oxygen transport and storage through Haemoglobin and Myoglobi Alternative oxygen transport by some lower animals by Hemerythrin and Hemocyani Active site structure elucidation using magnetism, light absorption, vibration spectroscopy and Mössbauer spectroscopy. (4 L Uptake, transport and storage of an essential elements as exemplified by Iron: Iro mobilization problemOxidation states, solubility and medical relevance Siderophores (Fe uptake by microorganism), Phytosiderophores (Fe uptake by plants Transport and storage of iron (Transferrin, Ferritin, Hemosiderin).(4 L)
	Copper containing proteins as an alternative to biological iron: Type 1 blue copp center, Type 2 and Type 3 copper centers in O ₂ activating proteins, Copper proteins a Oxidases/Reductases, Cytochrome c Oxidase, Cu-Zn and Ni superoxide dismutases (4

Text	1.	Concept and models of inorganic Chemistry, Douglas, Mcdeniel, Alexander,
Books,	2.	Inorganic chemistry, Shriver & Atkins, Oxford
and/or	3.	Inorganic Chemistry, Huheey, Kieter, kieter, Medhi, Pearson education.
reference	4.	The Organometallic Chemistry of the Tr. Metals by Robert H. Carbtree.
material	5.	Bioinorganic chemistry by Bertini, Gray, Lippard and Valentine.

	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO1 1	PO12
CO1	3	2	3	3	2	2	2	3	3	2	1	1
CO2	2	2	3	2	2	2	2	3	3	1	1	1
CO3	2	3	3	2	2	2	2	3	3	3	1	1
CO4	3	3	3	1	2	2	3	3	3	3	1	1
CO5	3	3	3	1	1	3	3	3	3	2	1	1

Course	Title of the	Program Core	Total	number o	f contact he	ours	Credit					
code	course	(PCR)/Electives	Lecture	Tutorial	Practical	Total						
		(PEL)	(L)	(T)	(P)	hours						
CYC803	Pericyclic	PCR	3	1	0	4	4					
	Reactions and											
	Organic											
	Photochemistry											
Pre	-requisites	Course Assessment methods [Continuous assessment (CA), mid-										
			term (M		d term (ET	)]						
	NIL			CA+MT+	-ET							
Course	CO1: To understar	d the basic princip	oles of per	icyclic and	their class	sification	S					
outcomes	CO2: To apply the						-					
	CO3: To understar						ns and thei					
	classifications		•	•								
	CO4: To learn the concepts of photoredox catalysis											
	CO5: To apply the concepts of organic photochemistry in organic synthesis											
	CO6: To analyse	the probable me	chanism d	of pericyc	lic and org	ganic ph	otochemica					
	reactions											
Topics	Pericyclic reaction						18 L					
covered	Molecular orbital hexatriene and ally		tier orbita	als of et	hylene, 1,	,3-butadi	ene, 1,3,5 (3 L)					
	Classification of pe PMO approach.	ricyclic reactions.	Woodward	d-Hoffmar	n correlatio	on diagra (3 L)						
	Electrocyclic reaction	ons - conrotatory a	and disrota	atory motio	ons. 4n, 4n	+2 syste						
	(4 L) Cycloaddition – antarafacial and suprafcial additions, 4n and 4n+2 systems, 2+2 addition of ketenes, 1,3 dipolar cycloadditions and cheletropic reactions.(4 L) Sigmatropic rearrangements - suprafacial and antarafacial shifts of H, Sigmatropic shifts involving carbon moieties, 3,3- and 5,5 sigmatropic rearrangements. Claisen, cope and aza-cope carbon rearrangements. Fluxional tautomerism, Ene reactions.Recent advances from current literature. (4 L)											
Organic photochemistry: 18 L General information, Photo-chemical energy, effect of light intensity on the rate photochemical reactions. Jablonski-diagram, photo-sensitisation and quenching. Norrish type-I, type-II processes, Paterno-Buchi reaction, photochemistry of unsatura												

	CURRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	compounds. (4 L)
	Types of photochemical reactions: Photo-dissociation, gas phase photolysis. Photochemistry of alkenes: Intramolecular reactions of the olefinic bond-geometrical isomerism, cyclisation reactions, rearrangement of 1,4- and 1,5-dienes. (3 L)
	Photochemistry of Carbonyl compounds: Intramolecular reactions of carbonyl compounds saturated, cyclic and acyclic, $\beta$ , $\gamma$ -unsaturated and $\alpha$ , $\beta$ -unsaturated compounds. Cyclohexadienones, Intermolecular cycloaddition reactions, dimerization and oxetane formation. (4 L)
	Aromatic compounds: Isomerisation, additions and substitutions. Miscellaneous photochemical reactions: Photo-Fries reactions of anilides, Photo-Fries rearrangement, Barton reaction, Singlet molecular oxygen reactions. (2 L) Photo-degradation of polymers, photo-substitution, photo-reduction of ketones, photo-oxidation, di- $\pi$ methane rearrangement, photochemistry of arenes. (3 L) Organo-metallic photochemistry, photochemistry of vision. (2 L)
Text Books, and/or reference materials	<ol> <li>Molecular Orbitals and Organic Chemical Reactions by I. Fleming, Wiley.</li> <li>Pericyclic reaction by S. Sankararaman, Wiley VCH, 2005.</li> <li>Photochemistry and Pericyclic Reactions by Jagdamba Singh, New Age Science publisher</li> </ol>
	4. Mechanism of Organic Chemistry by Peter Sykes

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	2	1	3	2	1	2	2
CO2	3	3	3	3	2	2	1	3	2	2	2	3
CO3	3	3	3	2	2	2	1	3	2	1	2	2
CO4	3	3	3	2	2	2	1	3	3	2	2	3
CO5	3	3	3	3	2	3	2	3	3	1	2	3
CO6	3	3	3	3	2	3	2	3	3	1	2	2

CourseC ode	Titleofthecourse	ProgramCore( PCR)/	To	TotalNumberof contacthours						
oue		Electives(PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours				
CYC804	Spectroscopy: Theory and Applications	PCR	3	1	0	4	4			
Pr	e-requisites	Course Assessment methods [Continuous assessment (CA), mid- term (MT) and end term (ET)]								
	NIL	CA+MT+ET								
CourseOutc omes <b>CO1</b> : Understanding the principle and applications of UV-VIS, IR and R spectroscopy to elucidate the structure of different organic and inorganic molec <b>CO2</b> : Understand the core concept of Mass Spectroscopic techniques and contribution to the methods of structure elucidation of organic and inorganic spec <b>CO3</b> :Understand the different aspect of Nuclear Magnetic Resonance spectro and its application in the field of structure determination of organic and ino										

URRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
species
<ol> <li>Theories of Microwave, IR, UV-VIS and Raman spectroscopy and their applications to elucidate the structure of different organic and inorganic molecules. Broadening of spectral lines. Basics of Furrier transform technique. Details of the instrumentation used for these spectroscopic techniques. (18 L)</li> <li>Mössbauer Spectroscopy: Basic principles, spectral parameters and spectrum display. Application of the technique to the studies of (i) bonding and structures of Fe(II), Fe(III) compounds and (ii) detection of oxidation states. (4 L)</li> </ol>
3. <b>NMR Spectroscopy</b> : Basic principles, chemical shift, spin-spin interactions and coupling constants, Interpretation of first order NMR spectra; methods for simplification of second order spectra: use of double resonance, Lanthanide shiftreagent, spin-tickling, INDOR, NOE, effect of solvents, preliminary idea on ¹⁹ F, ³¹ P, ¹⁴ N, ¹⁵ N, ¹⁷ O, NMR imaging, ¹³ C NMR Spectroscopy: Basic principles, proton decoupled spectra, interpretation and application in organic molecules. (14 L)
4. <b>Mass Spectrometry</b> : Basic principles, soft ionization methods: CI, FD, FAB, plasmadesorption; fragmentation pattern in EI, GC-MS, MS-MS, LC-MS. Application of MS instructure elucidation. (8 L)
<ul> <li>1. Fundamentals of molecular spectroscopy by Banwell</li> <li>2. Elements of magnetochemistry: Dutta and Shyamal</li> </ul>
3. Structural methods in molecular inorganic chemistry: Rankin, Mitzel, Mosrision
<ul> <li>4. NMR spectroscopy (Basic Principles, concepts and application in chemistry): H. Gunther</li> <li>5. Spectrometric identification of organic compounds: Robert Silverstein</li> <li>6. Organic spectroscopy: William Kemp</li> </ul>

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	2	1	3	3	2	2	1
CO2	3	3	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3

	CURRICULUM	AND SYLLABU	IS FOR INT	EGRATED	MSC IN	CHEMIST	RY
Course	Titleofthe	ProgramCor	То	talNumberc	fcontactho	ours	Credit
Code	course	e (PCR) /Electives(P EL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	
CYE811	Chemistry of materials: Synthesis, structure and applications	PÉL	3	0	0	3	3
Pre-	requisites	Course Asses		IT) and end	l term (ET)	•	CA), mid-
	NIL			CA+MT+E	ΞT		
Outcomes	and how to ove CO3: To know materials. CO4: To have space group). CO5: To learn	rstand the challer ercome the challer about the character the concept of about amorphous e a comprehens	nges. erization tecl symmetry ir s and crystal	nniques emp materials Iline materia	bloyed for t (including als.	he characto point grou	erization c p and
Fopics Covered	technique, sol- air sensitive sy Concepts of Sy Methods of cr diffraction, am structure. Mille The reciprocal and space gro factors, X-ray p Characterizatio	naterials: high ten gel, inorganic mo onthesis, bulk mat ymmetry: point gro rystallography: po orphous and crys r indices, Miller-B lattice, Brag's la pup, data collect photoelectron spe on of materials: I desorption, therr	etathesis ro erials and na oups and sp owder, sing stalline mate ravis indices w in recipro ion, Intensi ctroscopy () different	ute, hydrotl ano-materia bace groups le crystals, erials visua s. (12 L) bcal lattice, ty of data KPS). (8 L)	crystal sy crystal sy crystal sy collection,	hniques, p materials. ttices, unit eutron and d drawing mmetry, p theory of	oyrolysis, (4 L) cell. (8 L) d electro of crysta oint grou
TextBooks, and/or reference material	<ul> <li>A.R. W</li> <li>L.E. Sn</li> <li>C. Kitte</li> <li>C.N.R.</li> <li>C Giaca</li> <li>J. D. D.</li> </ul>	Magnetic, Optical est, Solid State C nart and Moore, S I, Introduction to Rao and J. Gopa avazzo (Ed.) Func unitz, X-ray analy I. Jensen, X-ray s	hemistry an Solid State C solid state p Iakrishnan, damentals of vsis and the	d its applica hemistry Ar hysics New directi f crystallogr structure c	ations. n Introduct ons in solid aphy of organic i	d state che molecules(	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	3	3	3	3	3	3
CO2	3	3	3	3	3	3	2	3	1	2	3	3
CO3	3	3	3	3	2	3	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	1	3	3	3	3
CO6	3	3	3	3	3	3	3	3	3	3	2	3

Course Code	Titleofthecourse	ProgramCore( PCR)/	То	talNumber	of contactho	ours	Credit
oode		Electives(PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	
CYE812	Molecular Modelling in Chemistry	PEL	3	0	0	3	3
	e-requisites	Course Assess		IT) and end	term (ET)]	ssment (C	CA), mid-
	CYC701			CA+MT+I	ΞT		
CourseOu omes	interactions, stru CO2: Understan CO3: Apply DFT CO4: Understan CO5: Modelling dynamic simulati	e principles of cture and chemica ding of Potential e and <i>ab initio</i> tech ding reaction mec of large assembly ons and Monte Ca e on commercially	al bonding, nergy surf niques to o hanism. / of atoms, arlo metho	ace determine r /molecules ds.	nolecular pr using appre	operties	nolecula
overed	Concept of qua approximation, o calculations. <b>Potential Energy</b> Potential energy energy by mode range and long r <b>Basics of ab ini</b> Modelling of S calculations, Cor <b>Molecular Dyna</b> Study of an a Approximation of Concept of largy Carlo and Molec Flexible models properties of a Calculation of st models. Concept of hydr drug design, bio- <b>Programming</b> High Performance <b>Software Packa</b> Gaussian 16, C	surfaces and inte I potentials for sir ange interactions. <b>itio and DFT calc</b> single molecules: nformational analy <b>mics Simulation</b> ssembly of atom f the total potentia e number of mici ular Dynamics sin s and calculation polar medium: ructure, energy ar (4L) ophobic and hydr molecules like pe <b>Techniques:</b> Pyth ce Computing (HP	I ab initio theory, se rmolecular mple atom ulations: Geomet rsis etc. s: n of mod l energy as rostates, a nulations. n of force Continuund free energy cophilic inte ptides, pro non progra C) environ	e calculatio emi-empirio r interaction s, ions and ry optimiz olecules (c s the sum c averages a e constant im models ergy throug eractions. L oteins, mem amming, B iment.	ns within E cal and Mol (2L) ns and mode molecules ation, Vibra luster and/ of pair poten nd basic pr ts. Structurs versus m h simulation Jse of mole abranes etc. ash scriptin	Born-Oppo lecular M elling of c . Concep ational f for bulk tials. rinciples ral and nolecular ns using r cular mo ng, introd	enheime echanics alculated t of shor (4L) requency (2L) phases) (4L) of Monte (4L) dielectric models nolecula delling ir (2L) uction to (2L)
Text Boc		Quantum Chemis	stry, by At	tila Szabo	and Neil S	6. Ostlun	(6L d, Dove
and/or	Publicatio	ons					

CUR	CURRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY											
reference material	<ul> <li>Molecular Modelling: Principles and Applications by A.R. Leach, Longman (1996).</li> <li>Molecular Modelling and Simulation by T. Schlick, Springer (2006).</li> <li>Computer Simulation of Liquids, M. P. Allen &amp; D. J. Tildesley, Clarendon Press</li> <li>Density Functional Theory: A Practical Introduction, by David Sholl and Janice A Steckel, Wiley-Interscience (2009)</li> </ul>											

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	1	3	3	1	1	2	1
CO2	3	2	3	2	2	1	3	3	1	1	2	1
CO3	3	2	3	2	2	1	3	3	2	3	2	1
CO4	3	3	3	2	2	1	3	3	2	1	2	1
CO5	3	3	3	2	3	1	3	3	3	1	2	1
CO6	3	3	3	3	3	1	3	3	3	2	3	1

Course	Title of the	Program Core	Tota	al Number o	f contact ho	ours	Credit			
Code	course	(PCR)/Electiv es(PEL)	Lecture(L )	Tutorial (T)	Practical (P)	TotalHo urs				
CYS851	AdvancedPr actical on PhysicalChe mistry	_	0	0	4	4	2			
Pre	-requisites	Course Asses		ods: [Contin ssessment (		ition (CE) a	ind end			
(	CYS751			CE+EA						
Course Outcome	s spectroscop the rate ofth	<ul> <li>CO1: Basic concepts of spectrophotometric estimation and IR spectroscopy.Experimental knowledge on the influence of reaction parameters on the rate of the reaction, and analysis thereon.</li> <li>CO2:Learning about handling of spectrophotometer and IR spectrometer and their basic the ory.</li> </ul>								
Topics Covered										

Text Books,	<ol> <li>Instruction manual provided by the Instructor</li> </ol>
and/or	2. ExperimentsinPhysicalChemistrybyCarlGarland,JosephNibler,DavidShoema
Reference	ker
material	3. Practicalin PhysicalChemistrybyP.S. Sindhu
	4. PracticalPhysicalChemistrybyViswanathan andRaghavan

#### Mapping of COs (Course Outcomes) and POs (Programme Outcomes)

	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	-	-	-	-	-	-	-	-
CO2	3	3	-	2	2	3	-	2	2	-	1	-
CO3	-	-	-	-	-	2	-	2	2	-	3	3
CO4	3	3	-	3	3	-	1	3	-	-	-	-
CO5	-	-	-	-	-	-	-	3	3	-	-	
CO6	-	-	-	-	-	-	-	3	3	-	2	2

Course	Title of the course	Program	Tota	al Number o	f contact ho	ours	Credit		
Code		Core (PCR) /Electives (PEL)	Lecture(L )	Tutorial (T)	Practical (P)	Total Hours			
CYS852	Synthesis and Characterisation of Complex Compounds	PCR	0	0	3	3	2		
Pr	e-requisites	Course Ass	essment meth	nods: [Conti assessment		ation (CE)	and end		
	NIL			CE+E/	4				
Course Outcomes	CO1: Coordinat CO2: Crystalliza CO3: Decompo CO4: Characte spectroscopy a CO5: Spectral o	ation technique sition and estil erization of s nd CHN analys	es to purify the mation of met ynthesized r sis.	e synthesize al ion(s) usi	ed materials	hotometry			
Topics Covered									
Text Books, and/or Reference material	ks, 1. Advanced Inorganic Experiments, By G. N. Mukherjee. for erence								

	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	1	3	3	3	2	2	1	3	3	3	1	1

CURRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY												
CO2	2	2	3	3	2	1	1	3	3	3	1	1
CO3	1	3	3	3	2	2	1	3	3	3	1	1
CO4	3	3	3	3	2	2	1	3	3	3	1	1
CO5	3	2	3	3	2	3	1	3	3	3	1	1

Course	Title of the course	Program	Tota	al Number o	of contact ho	ours	Credit			
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total				
		Electives	(L)	(T)	(P)	Hours				
		(PEL)								
	Chromatographic	PCR	0	0	3	3	2			
CYS853	Separation of									
0.0000	Organic									
	Compounds	Course Assessment methods: [Continuous evaluation (CE) and								
Pr	e-requisites	Course Asses				uation (C	E) and			
	NIL		ena	assessmer CE+EA						
Course		d the working pri					у.			
Outcomes		sampling method								
		ne techniques a	nd applica	ition of thi	n layer, pa	per and	column			
	chromatography		oto aromo							
Topics	Thin Layer Chr	nalyze the chrom	alograms	or GC and	APLC					
Covered	•	tion of R _f values	and identifi	ication of o	raanic comr	ounde				
Covered		n and separation					2			
		of a mixture								
	(8.5:1.5).					· · · · · · · · · · · · · · · · · · ·				
		ography: Ascen	ding and	Circular						
	Determina	tion of R _f values	and identifi	ication of o	rganic comp	ounds.				
		n of a mixture of a	amino acida	S						
		n of sugars								
	Column Chrom									
		of Fluorescein a								
		n of aniline and N								
		n of Lycopene and of chromatogra								
Text Boo		ls of analytical of					ch 8th			
and/or	edition,Thom		, ioniou y,				51, 011			
reference										
material										

	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	1	3	3	3	3	3
CO2	2	3	3	3	3	3	1	3	3	3	3	3
CO3	1	3	3	3	3	3	1	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3

Course Code	Title of the course	Program Core (PCR)/	Tota	l Number o	f contact ho	ours	Credit			
Couc		Electives(PE L)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours				
CYE911	Advanced Quantumand Computational Chemistry	PEL	3	0	0	3	3			
	Pre-requisites	Course Assessment methods [Continuous assessment (CA), mid-term (MT) and end term (ET)]								
	CYC701			CA+MT+	⊦ET					
Course Outcomes	<b>CO1</b> : To apply dif methods to solve va				independe	ent appro	oximation			
	<b>CO2</b> : To apply Born components from me		•••	nation to se	parate nucl	ear and e	electronic			
	CO3: To analyze the	e chemical bor	nding throu	igh MO and	d VB theory					
	<b>CO4</b> : To understand transition among diff				matter and	selection	rules for			
	CO5: To apply Hück	el theory in co	njugated s	system and	it applicatio	ons				
	<b>CO6</b> : To evaluate th using computational		pectroscop	oy, chemica	al bonding c	of small n	nolecules			
TopicsCove	ered Approximate Metho The variation metho application to simple Many Electron Ator Classical Calculation symmetry in electr method Spin-orbital intera states. Molecules and o treatment of diatom electronic configurat Time dependent p rule. Lamberts Be emission.	od, trial wav problems (Ze ms: ns of He ator on wavefunc (5L) ction: LS an chemical bo ic molecules, ions. erturbation t	eeman, Sta n, Hartree tion, Slate d JJ cou d JJ cou nding: B ldea of s heory: Tra	rk effect et -Fock equa er determin pling, Tern corn-Oppen self- consis	c.) ations of He nants, Hart n symbol a heimer ap stent field n	elium ato ree-Fock and spec proximati nethod, r	(7L) ms, anti- Roothan troscopic (2L) ion, MO nolecular (4L) s Golden			
	Hückel theory of calculations. Appli cyclobutadiene.						density radical,			
	Software Demonstr Modelling of Singl calculations, time-de etc.	le molecules:	Geomet	ry optimiz	ation, Vibra		• •			

### NINTH SEMESTER

Gas phase reactions through DFT calculation: Reaction mechanism through analysis of transition states, determination o energy, rate coefficients etc.(2L)									
-	1. Quantum Chemistry by Levine								
and/or reference	2. Physical Chemistry: A Molecular approach by Donald A. McQuarrie								
material	3. 3. Introductory quantum chemistry by A. K. Chandra								
	4. Molecular theory and group theory by R. L. Carter								

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	3	3	1	3	3	3	2	1	1
CO2	3	1	3	3	3	1	3	3	3	2	1	1
CO3	3	1	3	3	3	1	3	3	3	2	1	1
CO4	3	1	3	3	3	1	3	3	3	2	1	1
CO5	3	3	2	3	2	1	3	3	2	1	2	3
CO6	3	3	2	3	2	1	3	3	2	1	2	3

Course Code	Titleof thecourse	ProgramCor	Tota	alNumberof	contacthou	rs				
Code		(PCR)/Elect ives(PEL)	Lecture (L)	Tutorial (T)	Practical (P)	TotalHours				
CYE912	Basics of Nonlinear Dynamics	PEL	3	0	0	3				
F	Pre-requisites	Course Assessment methods (Continuous assessment (CA), n term (MT) and end test (ET))								
	CYC801	CA+MT+ET								
CourseOu mes	<b>CO2</b> : The fundam <b>CO3</b> : Numerical various nonlinear	entals of dynam programing me problems. cation and use	nical syster ethods and	n theory su d approxin	ch as stabili nate analyti	linear systems. ity, bifurcation etc. cal techniques for Il theory in multi-				
TopicsC overed										

CL	IRRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY
	in XPPAUT/ MATLAB/ GEOGEBRA/ MATHEMATICA/ GNUPLOT etc. Solving PDE(s) using FTCS method in Fortran.(4L)
	<b>One Dimensional Flows:</b> fixed point and stability with example such as Logistic equation. Linear stability analysis, basics of existence and uniqueness criteria impossibility of oscillations in 1D flow, concept of potential well; Bifurcation in 1D Saddle Node, Transcritical, Pitchfork etc with concept of hysteresis, Imperfec bifurcations and Catastrophes with examples. Flows on the circle: Uniform and non-uniform oscillator. Ghosts and bottlenecks. Overdamped pendulum.(4L)
	Two Dimensional Flows: Linear systems with definition and example; Classification of linear systems, classification of fixed points: Saddle node, sink, source, spiral centre, star, degenerate nodes, non-isolated fixed points etc and phase portrait; fixed point and linearization of nonlinear systems; Conservative systems, reversible systems; Limit Cycles: Van Der Pol oscillator, Lyapunov functions, Dulac's criterion Poincare-Bendixson Theorem (quantitative description); Lienard systems, Relaxatior Oscillators, weekly nonlinear oscillators: Duffing etc; Solution techniques: Regula perturbation theory and its failure; Multi-scale analysis, Method of Averaging Renormalization of Group etc; Revisiting bifurcation in 2D flow: Saddle node Transcritical, Pitchfork, Hopf, homoclinic and heteroclinic bifurcation. Bifurcation analysis using MATCONT/ XPPAUT softwares; oscillating chemical reactions. (14L] Spatial Pattern forming systems: Reaction-Diffusion systems, Dispersion relation Turing Patterns.(2L)
	<b>Chaos:</b> Brief description of Chaos in 3D flow using Lorentz Oscillator, Lyapunov exponent etc. (2L)
	Application: <u>Ecology:</u> Romeo-Juliet love affairs/ Insect Outbreak dynamics/ flashing rhythm of fire- flies etc, Rabbit vs Sheep model/ Predator-Prey model, Grazing/ Harvesting model Lake-Eutrophication model etc, Critical/Tipping and Non-critical transitions and Early Warning Signals of Tipping. <u>Chemistry</u> : Turing pattern formation: Analysis and generation of spot, stipe, Labyrinth etc patterns using Gierrer Meinhardt/ Gray-Scott Belousov-Zhabotinski (BZ)/ Chlorine-dioxide-iodine-malonic acid (CDIMA) chemica reactions etc. <u>Biology:</u> Neuron system: Hodgkin-Huxley models/ FitzHugh-Nagumo model analysis, spike and pattern generation etc/ Circadian rhythm/ Glycolytic oscillator etc; <u>Disease/Epidemics dynamics</u> : Modelling infectious diseases: SIR, SIS model etc. (6L)
TextBooks,an d/orreference material	<ol> <li>Strogatz, S. Nonlinear Dynamics and Chaos. Reading, MA: Addison-Wesley 2007.</li> <li>Nonlinear Ordinary Differential Equations, D. W. Jordan, and P. Smith Oxford</li> </ol>
	<ol> <li>University Press 1999</li> <li>Guckenheimer, J., and P. Holmes. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. New York, NY: Springer-Verlag, 2002.</li> <li>Introduction to Perturbation Techniques, Ali Hasan Nayfeh, WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim, 2004.</li> <li>Lakshmanan, M and R. Rajasekar, Nonlinear Dynamics: Integrability, Chaos</li> </ol>
	and Patterns, Springer, 2003. 6. Clifford Henry Taubes. Modeling Differential Equations in Biology, Cambridge

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	3	2	1	3	3	2	1	1	1
CO2	3	2	3	3	3	1	3	3	3	3	1	2
CO3	3	2	3	3	3	3	3	3	2	3	1	2
CO4	3	2	3	3	3	3	3	3	3	3	3	3

Course Code	Titleof thecourse	of thecourse ProgramCore TotalNumberof contacthours (PCR)/Electiv										
Code		es(PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours						
CYE913	Advanced Spectroscopic Techniques and Applications of Group Theory	PEL	3	0	0	3	3					
F	Pre-requisites	Course Asses			tinuous ass I termtest (E		CA), mid-					
CY	C701, CYC801	1, CYC801 CA+MT+ET										
	itco CO1:Fundamenta	CO1:Fundamentalsoflaserandapplicationinscience and industry										
mes	CO3: Modern teo CO4: Different as	<ul> <li>CO2: Photoelectron spectroscopy, Mossbauer spectroscopy</li> <li>CO3: Modern techniques of fluorescence spectroscopy,</li> <li>CO4: Different aspects of fluorescence process</li> <li>CO5: GOT, SALC and Projection operator</li> </ul>										
	<b>CO6</b> : Different <i>A</i> spectroscopy, Ele			ory in cher	nical bondiı	ng, IR an	id Raman					
TopicsC overed	1. Laser: Funda 2.	amentals, Charao	cteristics, C	Q-switching	, Mode-lock	ing						
	Applications, Ti	meresolvedlasers	spectrosco	py(picosec	ond,femtos	econdlase	rspectro					
	scopy)anditsap	plication.				(6 L)						
	3. Laser induce	ed fluorescence s	pectroscop	py and its a	pplication	(3L)						
	4. Differentpho	otophysicalproce	sses, pho	otophysical	quenchingp	rocesses	and its					
	mechanism, Ch	arge-transferpro	cesses (Ma	arcustheory	/). Excited s	tate life-tir	ne					
	Fluorescences	Fluorescencesensors and different mechanisms, Solvent effect on fluorescence,										
	Lippert-mataga	equation, Excite	ed state dip	ole momer	nt	(8L)						
	5. X-ray photoe	electron spectros	copy(4L <b>)</b>									
	6. Consequenc	es of GOT and c	levelopmei	nt of SALC	S.							
	7. Applications	of group theory	in chemic	al bonding	, IR and Ra	aman spe	ctroscopy,					

CL	IRRICULUM AND SYLLABUS FOR IN	TEGRATED MSC IN CHEMISTRY
	Electronic spectroscopy	(14 L)
TextBooks,an d/orreference material	<ol> <li>Modern spectroscopybyJ.M.Holl</li> <li>Solidstatechemistryandits applic</li> <li>ChemicalKinetics byK.J.Laidler</li> <li>OrganicandphysicalChemistryoff</li> <li>Atkin'sPhysicalChemistrybyP.Att</li> <li>Fundamentalsof molecularspect</li> <li>Fundamentalsofphotochemistry</li> <li>Molecular symmetry and group to</li> </ol>	ationbyWest PolymersbyYGnanouandM.Fontaanille,Wiley kinsandJ. dePaula(7 th ed.) roscopyByBanwelland McCash ByRohatgi and Mukherjee.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	3	1	3	3	1	2	2
CO2	3	3	3	2	2	2	1	3	3	2	2	1
CO3	3	3	3	2	2	2	1	3	3	2	2	1
CO4	3	3	3	2	2	2	1	3	3	2	2	1
CO5	3	3	3	2	2	2	1	3	3	2	2	1
CO6	3	3	3	2	2	2	1	3	3	2	2	1

Course Code	Title of the course	Program Core	Total	Number of	contact hou	Irs	Credit					
Code		(PCR)/EI ectives(P EL)	Lecture( L)	Tutorial (T)	Practical (P)	Total Hours						
CYE914	Surface Science, Electrode Kinetics and Corrosion Science	PEL	3	0	0	3	3					
I	Pre-requisites	Course A	Assessment	-	· ·		erm (MT)					
			and end assessment (EA)]									
CY	′C505, CYC801		CT+MT+EA									
Course Outcomes	CO1:Process of adsorbate-adsorb determinecatalytic CO2: Basics of andtechnology. CO3: Concept colloidalstability. CO4: Kinetics towardsindustrially CO5:Corrosionofy thods.	of adso their appl potential surface a dissociation	ication is ication in and its and its r ofwater.	science role for relevance								

_									
	RRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY								
Topics	Adsorption on solid:								
covered	BET,Harkins-								
	JuraandGibbsadsorptionisotherms, surfacetensionandsurfacepressure,								
	contactangle:interfacialtension, temporary and permanent Hysteresis. (4 L)								
	Micellesandmicroemulsions: Phasediagramofmicellarsystem. Hydroplili								
	Lypophilic balance and applicatio								
	Massactionmodelandpseudophasemodelfornon-								
	ionicandionicmicelles.Relationshipbetweenthermodynamicpropertiesformicellization								
	withCMC. Phase diagram of microemulsions. Packing factor and micellar stabilit								
	(2 L)								
	Nanoparticles: Optical properties of nanoparticles. (2 l								
	Electrical double layer and Electrokinetic effects: Electrical double layer, Ze								
	potential, Stability of colloids, electroosmosis, electrophoresis, streaming potenti								
	etc. (3 L Electrode kinetics:								
	Derivation of Butler-volmer equation, Study of the kinetics of different electrode reactions (including elucidation of reaction mechanism). Polarizable and non-								
	polarizable electrodes. Numerical problems. (4 L)								
	Corrosion science:								
	<b>Different forms of corrosion:</b> properties and remedial methods. (2 L								
	Tafel relation and mixed potential theory, Concept of exchange and limiting curre								
	density.								
	Potentiodynamicpolarizationandelectrochemicalimpedancespectroscopic method								
	to determine rate of corrosion. (3 L)								
	<b>Corrosion control:</b> Cathodic (impressed sacrificial metal, current method ar								
	metallic coating) and anodic control methods. Numerical problems. (4 L								
	Application of corrosion inhibitors including green inhibitors. (2 L								
	High temperature corrosion: mechanism, kinetics and remedial measures. (2 L								
Text Books,	1. ModernElectrochemistry2A-FundamentalsofElectrodicsbyBockrisandReddy								
and/or	<ol> <li>CorrosionEngineeringbyMG Fontana</li> </ol>								
Reference	3. CorrosionEngineeringbyBNPopov								
material	4. SurfactantscienceandTechnology(3rded.) byD. Myers.								
	5. Principlesofcolloidandsurfacechemistry(3rded)byPCHiemenzandRRajgopal								
	n								

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	2	1	3	3	3	3	1
CO2	3	3	3	2	2	2	1	3	3	3	3	1
CO3	3	3	3	2	2	2	1	3	3	3	3	1
CO4	3	3	3	2	2	2	1	3	3	3	3	2
CO5	3	3	3	2	2	2	1	3	3	3	3	2

# CURRICULUM AND SYLLABUS FOR INTEGRATED MSC PROGRAM

Course	Title of the	Program Core	Tota	I Number o	of contact ho	ours	Credit			
Code	course	(PCR) /	Tutorial	Practical	Total					
000.0		Electives	Lecture (L)	(T)	(P)	Hours				
		(PEL)	(⊏)	(1)	(1)	TIOUIS				
CYE921	Advanced Green	PEL	3	0	0	3	3			
	Chemistry and		, C	, i i i i i i i i i i i i i i i i i i i	C C	, C	•			
	Analytical									
	Chemistry									
Pre	e-requisites	Course Asses	sment met	hods [Cont	inuous (CT)	, mid-terr	n (MT)			
			and er	d assessm	nent (EA)]					
	NIL			CT+MT+E	A					
Course	CO1: Students	will be given an i	ntroductior	n to green o	chemistry a	nd learn a	about its			
Outcomes	basic concepts			-						
		will learn the app								
	CO3: Demonst	CO3: Demonstrate the design for safer, energy efficient technology and proces								
		ptimization for cleaner industrial processes.								
		CO4: Understand the fundamentals of pollution prevention technique with respec								
		b health significance.								
		<b>CO5</b> : Fundamental understanding of monitoring and analysis of air and water								
Topics		o Green Chemist				15				
Covered		strategic of gree								
		ny, Less Haza								
		afer Solvents and								
		eedstocks, Reduc								
		alysis for Pollution				r Chemi	stry for			
		ention, Laboratory Green Chemistr				10 L				
		nd benefits of g	-	nietry: Dro	duction of		omicals			
		products. Examp								
		s, new separation								
		ternative solvents								
		astefulness in mo								
		nalysis for Air an			oung on me	<u>green en</u> 10				
	-	chemical analysi		•	Analysis o	-				
		solid, conductivit								
		hates, and differe	• • • •	•						
		th significance. M								
	water pollutants	s analysis.								
		analysis of air: M	lonitoring to	echnique th	nrough high	volume s	sampler,			
	SPM and RPM	sampler. Measure	ement and	analysis of	f SPM, RPM	l, SOX ar	nd NOX.			
Text Boo	ks, 1. Green Ch	emistry, An Introd	uctory Tex	t By Mike L	ancaster, R	SC publi	cations.			
and/or		on Green Analyti	cal Chemis	stry By Mig	juel de la G	iuardia, S	Salvador			
reference	Garrigues,			-						
material		s in Green Chemi		0	neering By	Paul T. A	Anastas,			
		Zimmerman, Sprir								
		Solvents for G	reen Cher	nistry By	Francesca	M Kerto	on, Ray			
		SC publications.								
		5. Environmental Chemistry with Green Chemistry By Asim Kumar Das, E								
		ironmental Chemistry with Green Chemistry By Asim Kumar Das, Bool Allied (P) Ltd.								

### CURRICULUM AND SYLLABUS FOR INTEGRATED MSC PROGRAM

	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	3	2	1	3	3	3	2	3		
CO2	3	2	3	2	3	2	1	3	3	3	3	3		
CO3	3	2	2	2	3	2	1	3	3	3	2	3		
CO4	3	3	3	2	2	3	1	3	3	3	3	3		
CO5	3	3	3	2	2	3	1	3	3	3	3	3		
Course	Title	of the	course		rogram					contact h		Credit		
Code					Core (PCR)/ Lecture Tutorial Electives (L) (T) (PEL)					Practical (P)	Hour	s		
CYE922	Met Met and	SyntheticPEL30033thodology for tal ComplexesIIIIIIIIAggregatesIIIIIIIII												
		uisites Course Assessment methods [Continuous assessment (CA), mid-term (MT) and end term (ET)]												
CYC	602 &	& CYC702 CA+MT+ET												
Topics covered	mid-term (MT) and end term (ET)]         CYC602 & CYC702       CA+MT+ET         ourse       CO1: Understand the importance of transition metal complexes         utcomes       CO2: Basic knowledge of different types of ligands and their applications         CO3: Primary Concept of designing and synthesis of a ligand         CO4: Learn about the different aspects of supramolecular chemistry         CO5: Clear idea about the synthesis of diversified macrocycles         CO6: Fundamentals of thermodynamic effects upon changing the cavity size of a macrocycle         opics       Introduction, Importance of ligand design and their applications in metal-complex													

CU	IRRICULUM AND SYLLABUS FOR INTEGRATED MSC PROGRAM
Topics Covered	Supramolecular Chemistry: Introduction, Host-Guest Chemistry, SelfAssembly, Supramolecular Building Blocks and Spacer, Driving Forces for the Formation of Supramolecular Structure. (2 L) Spatial Relationships between Host and Guest, Classification of Host-Guest Compounds, General Introduction to Podand, Coronand, Spherand, Coronand- Podand Hybrid, Cryptands. (2 L) The Chelate and Macrocyclic Effect on Host-Guest Binding, Synthesis of Crown Ethers, The Template Effect, Synthesis of Cryptands, Recent Developments in the Synthesis of Cryptands, Synthesis of Aza Crown Ethers and Related Compounds. (3 L) Chiral Crown Ethers, Proton Ionisable Crown Ethers, Diester Crown Ethers, Synthesis of Calix[n] Arenes, Chiral Calix[n] Arenes, Introduction of Functional Groups in Calix[n] Arenes, Reactions at Upper Rim of Calixarene. Selectivity of Cation Complexation, Cation Binding by Crown Ethers, Cation Binding by Lariat Ethers, Cation Binding by Cryptands, Thermodynamic Effect of Binding. (4 L)
Text Books, and/or reference material	<ol> <li>An Introduction to Supramolecular Chemistry by Asim K Das and Mahua Das.</li> <li>Analytical Chemistry of Macrocyclic and Supramolecular Compounds by S. M. Khopkar.</li> <li>Advanced Inorganic Chemistry by F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann.</li> <li>Synergy in Supramolecular Chemistry edited by Tatsuya Nabeshima.</li> <li>Concepts and Models of inorganic chemistry by B. E. Douglas, D. H. McDaniel and J. J. Alexander.</li> </ol>

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1		3	3	2		1
CO2	3	3	3	3	1		1	3	3	1	1	1
CO3	3	3	3	3	2	2		3	3	2		1
CO4	3		3	2	2	2	1	3	1	1	1	1
CO5	3	3	3	3	2	2	1	3	3	2	1	1
CO6	3		3	2	2	1	1	3	2	1		1

Course Code	Title of the course	Program Core (PCR) /	Tota	I Number c	of contact ho	ours	Credit		
		Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours			
CYE923	Small Molecule Activation, Nuclear Chemistry and Related Spectroscopy	PEL	3	0	0	3	3		
Pr	e-requisites	CourseAssessmentmethods[Continuousassessment(CA),mid- term(MT)andendterm (ET)]							
	CYC702	CA+MT+ET							
Course			biological roles of Nitric Oxide (NO) and the NO donor drugs, n {MNO} ⁿ notation of metal nitrosyls and their spectroscopic and						

95 | Page

Outcomes	CURRICULUM AND SYLLABUS FOR INTEGRATED MSC PROGRAM
Outcomes	structural properties to elucidate structure-function relationship, electrophilic an nucleophilic reactivity of metal coordinated NO.
	<b>CO2</b> : Active site structure and role of denitrifying bacteria responsible for nitrit
	$(NO_2)$ , nitric oxide (NO) and nitrous oxide $(N_2O)$ reduction to $N_2$ sustaining globa
	$N_2$ cycle, structure function of Metalloenzymes responsible for $N_2$ fixation.
	CO3: Basics of nuclear chemistry, the nuclear spin (I), quadrupole moment (C
	and ellipticity of the nuclides and numerical problems, Binding energy and relate
	numerical problems; Nuclear spin, quadrupole moment and Ellipticity of th nucleus and numerical problems.
	<b>CO4</b> : The concepts and working principle of three spectroscopy such as Nuclea
	Magnetic Resonance (NMR), Electron Paramagnetic Resonance (EPR) an
	Mössbauer spectroscopy.
	CO5: EPR spectroscopy, Interaction of electron spin and nuclear spin wit
	magnetic field, interaction of nuclear spin with electron spin (hyperfine
	superhyperfine coupling), importance of g values and its determination, Zero fiel
	splitting, Kramer's degeneracy and applications of EPR measurements to elucidat the chemical bonding properties.
	<b>CO6</b> : Mössbauer Spectroscopy, Frequency broadening and Doppler Effect, Deca
	schemes of Mössbauer nuclides, applications of Mössbauer Spectroscopy t
	elucidate the oxidation states, spin states, site symmetry and bonding properties of
<u> </u>	Mössbauer nuclides (importance of Quadrupole splitting and Isomer shift values).
Topics	Small Molecule Activation:
Covered	Importance of NO as ligand and its diverse roles in biology, NO Synthase enzym
	and NO donors including metal nitrosyls, MO diagram of NO and its variou
	binding modes, Enemark-Feltham {MNO} ⁿ notation, Spectroscopic and structura
	properties of various $\{MNO\}^n$ species (M = Fe and Cu), NO detection methods
	Electrophilic and nucleophilic reactivity on metal activated NO moiety. (7L)
	Naturally occurring activation of small molecules like nitrate ( $NO_3^{-}$ ), nitrite ( $NO_2^{-}$
	nitric oxide (NO), nitrous oxide ( $N_2O$ ) and nitrogen ( $N_2$ ) related to the Denitrification
	and N ₂ Fixation pathways of Nitrogen Cycle. Enzymes involved for such activatio
	of small molecules and their active site structures, catalytic activity and impact o Atmospheric Nitrogen Cycle. Organic nitrile (RCN) activation by Nitrile Hydrats
	enzyme. (9L)
	Nuclear Chemistry:
	Concept of Quarks; Size, shape, stability and classification of nuclides, Nuclea
	potential diagram, Packing fraction, Mass defect, Binding energy and relate
	numerical problems, Quantum numbers of nucleons and magnetic properties Nordheim rules, Nuclear magnetic resonance and its application to medica
	diagnosis such as MRI, Electric quadrupole moment of the nuclides and concept of
	electric multipoles; Nuclear spin (I), quadrupole moment (Q) and Ellipticity of th
	nucleus and numerical problems. Nuclear shell model, magic number an
	periodicity of nuclear properties. (8L)
	Spectroscopy related to nuclear spin:
	(1) Electron Paramagnetic/Spin Resonance (EPR/ESR) Spectroscopy
	Interaction between nuclear/electron spin with magnetic field, techniques of EP
	spectroscopy, Relaxation time and line width in EPR transition, EPR relaxation an
	chemical bonding, Interaction of nuclear spin with electron spin (hyperfine
	superhyperfine coupling), g values and factors affecting it, determination of values, Zero field splitting, Kramer's degeneracy and applications of EPI
	measurements. (5 L)
	(2) Nuclear resonance or recoilless absorption and Mössbaue

C	URRICULUM AND SYLLABUS FOR INTEGRATED MSC PROGRAM
	effect, Characteristics of Mössbauer nuclides and related Decay schemes, Quadrupole splitting, Isomer shift and its application to assign the oxidation state, spin state, site symmetry and bonding properties of Mossbauer nuclides. (5L)
Text Books, and/or reference material	<ol> <li>Nitric Oxide Research (Eds. M. Feelish, J.S. Stamler) Wiley, Chichester, 1996.</li> <li>Activation of Small Molecules, William B. Tolman, Wiley.</li> <li>Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, Wolfgang Kaim and Brigitte Schwederski, Wiley</li> <li>Essentials of Nuclear Chemistry, H. J. Arnikar, New Age International Publishers, 2009</li> <li>Nuclear Physics, Irving Kaplan, Narosa Publishing House, 2002</li> <li>Modern Nuclear Chemistry, W. D. Loveland, D. J. Morrisey, Glenn T. Seaborg, Wiley.</li> <li>Elements of Magnetochemistry, R. L. Dutta &amp; A. Syamal, East-West Press Pvt Ltd., New Delhi, India.</li> </ol>

Mapping of COs (Course Outcomes) and POs (Programme Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	3	3	3	3	2	1	1
CO2	3	2	3	2	2	2	3	3	3	2	1	1
CO3	3	2	3	2	2	2	1	3	2	2	1	1
CO4	3	3	3	2	2	3	1	3	2	3	1	1
CO5	3	3	3	2	2	3	1	3	2	3	1	1
CO6	3	3	3	3	2	3	1	3	2	2	1	1

Course	Title of the course	Program Core	Total	number o	f contact ho	ours	Credit
code		(PCR)/Electives	Lecture	Tutorial	Practical	Total	
		(PEL)	(L)	(T)	(P)	hours	
CYE924	Application of	PEL	3	0	0	3	3
	Group Theory						
	and Applied						
	Electrochemistry						
Pre	-requisites	CourseAssessm	entmetho	ds[Continu	Jousassess	sment(C	A),mid-
	-		term(MT)	andend t	erm (ET)]		-
CYC50	1 and CYC601		Ċ	A+MT+E	Г		
Course outcomes	<ul> <li>CA+MT+ET</li> <li>CO1: To know group, examples, vector space, matrix and matrix operator.</li> <li>CO2: To know point group and its representations, reducible and irreducible representation.</li> <li>CO3: To know the significance of character tables of point group and its application in chemical problems.</li> <li>CO4: To get knowledge of thermodynamics and kinetics of electrochemical processes.</li> <li>CO5: To get foundation in different electrochemical methods like cyclic voltammetry coulommetry and its applications in inorganic fields.</li> </ul>						
			-				

Ele	RICULUM AND SYLLABUS FOR INTEGRATED MSC PROGRAM ectrochemistry: fundamental of electrode reaction, basic equipment for ctrochemical measurements,voltametric techniques, electrochemical behaviour transition metal complexes, metal complexes containing redox active ligands. (12 L)
Text Books, and/or reference materials	

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	3	3	2	2	1	3	3	3	1	1
CO2	2	2	3	3	2	1	1	3	3	3	1	1
CO3	1	3	3	3	2	2	1	3	3	3	1	1
CO4	3	3	3	3	2	2	1	3	3	3	1	1
CO5	3	2	3	3	2	3	1	3	3	3	1	1

CourseC	Titleoftheco	Program	TotalNum	berofconta	cthours		Credit		
ode	urse	Core(PCR)/ Electives(PEL)	Lecture (L)	Tutorial( T)	Practical (P)	TotalH ours			
CYE931	AdvancedOr ganic Synthesis	PEL	3	0	0	0	3		
Р	re-requisites	CourseA	ssessmentm term	ethods:[Con n(MT) ander			(CA),mid-		
	None		CA+MT+ET						
CourseO		andingofmechani	0	specific	eactions,th	eirapplica	ation in		
omes	CO2: Uses of carbon and o CO3: Birch theirtactics,st CO4: Role transformatio psynthesis.	ofsyntheticorganic of strategy and co ther special types preduction,how rategy andcontrol of specific nandtheirmechan rch oriented study	ntrol of Hyd ofbondforma he better has beenhigl reagents ismfromsubs	ation. yieldof hlighted. with rela tratetoprodu	product c ted mech	could be	eobtained, in their		

TopicsCov	1. Hydroborationreactionofalkenes, mechanismandhydrolysisprocess, Regioselec
ered	ivity,stereoselectivityandEnantioselectivehydroborationreaction, Uses of 9 BBN (in Suzuki Cross coupling reaction and others
	andMonoisocamphenylborane(IpcBH2),isomerisationofalkenesviahydroboratio
	n reactions, Carbon-Nitrogen, Carbon-halogen bone formation, synthesis of cyclopropyl, cyclobutyl derivatives and bicyclocompounds.
	(10L
	2. BirchReduction:Mechanism,dependentfactors,Applicationofbirchreductionin
	aminolysis, hydrogenolysis, Wilds& Nelsen modificationforpure products in Birch reduction, Regio-selectivity of Birch reduction. Hinepostulates
	Reduction of substitute benzenoid systems with EWG and EDG;bipheny
	systems, regio-selective reduction of naphthalene and
	substitutednaphthalene; Stereo selective of Birch reduction in naphthalene Reductionof Anthracene and Phenanthrene systems; single electron transfe
	system(SET), application in natural products yn the siswith special emphasison.
	(10L) 3. Wittig reactions or chemistry of Ylide: synthesis of phosphoylide; Stered
	chemical outcome of wittig reactions and their dependent factors. Stered
	selectivityincaseofstabilisedandnonstabilized ylides.Scholarmodifications
	Effect of ligands in phosphorous ylide. Advantages of Wittig-Horner reactio over Wittig reaction; Difference in reactivity of
	phosphorousandsulphurylide; Regioselective and stereo-
	selectivereactionwithstabilizedandnon-stabalizessulfurylides. (10L
Text	1. F.A.Carey&R.J.Sundberg,AdvancedOrganicChemistry,Springer,2007
Books,an	2. K.C.Nicolaou&E.J.Sorensen,ClassicsinTotalSynthesis:Targets,strategiesandMe
d/orrefere	thods,Wiley, 1996.
ncemateri al	<ol> <li>W.Carruthers, ModernMethodsinOrganicSynthesis, CambridgeUniversityPress, 20 04.</li> </ol>
	<ol> <li>PrinciplesofOrganicSynthesis, R.O.C.Norman&amp;J.M.Coxon, NelsonThrones, 1993, C RCPress.</li> </ol>
	5. OrganicsynthesisbyM.Smith,Elevier,4thEdition,2016.
	<ol> <li>Recent published papers in reputed journals on Hydroboration reaction Wittigreaction and Birch reduction have to follow as advance study for thi electivepaper.</li> </ol>

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	3	2	3	3	3	1	3	1
CO2	3	3	2	3	2	2	3	2	3	3	1	2
CO3	3	2	3	2	1	3	2	2	2	2	2	1
CO4	1	2	1	3	2	2	3	2	1	2	1	2
CO5	3	2	2	1	3	2	2	3	2	1	1	3

Course	CURRICULUM AN Title of the course	Program			of contact ho		Credit				
Code		Core (PCR)/	Lecture	Tutorial	Practical	Total	oroun				
0000		Electives				Hours					
	l		(L)	(T)	(P)	Hours					
	Davis Davis and	(PEL)		0		-					
CYE932	Drug Design and	PEL	3	0	0	3	3				
	Biophysical										
	Chemistry										
Pr	e-requisites	CourseAsse					A),mid-				
			term(l	MT) andeno	d term (ET)]						
	CYC401			CA+MT+	·EΤ						
Course	CO1: Introductio	n to Medicinal C	hemistry a	and Drug D	iscoverv						
Dutcomes	CO2: Conce		•	drug	mechanism		sificatio				
Jucomes		, Ç		urug	mechanish	i, cias	Sincation				
	pharmacokinetic										
	CO3: Overview of					•	0				
	CO4: Introductio						lecules				
	CO5: Learning o										
	CO6: Develop k	nowledge on va	arious inst	rumental te	chniques u	ised in Bi	ophysica				
	Chemistry										
Topics	Drug Design:										
Covered	Introduction: De	finition of drugs	s, differenc	ce betweer	drugs and	l toxins, r	nolecula				
	targets of drugs	Introduction: Definition of drugs, difference between drugs and toxins, molecular targets of drugs, different Intermolecular binding interactions between drug and									
	targets.										
		zyme inhibitor drugs: Real examples of known drugs (anti-bacterial, anti-									
	-	cholesterol, anti-obesity, anti-biotic, anti-viral, anti-hypertension) with their									
		mechanism of action. (3 L)									
		Pharmacokinetics and pharmacodynamics in drug action: Median lethal dose LD50,									
		Half maximal effective concentration EC50, Therapeutic index TI, Lipinski's Rule,									
		ADMET, Bioavailability and Gastrointestinal (GI) absorption of a drug, volume of									
		distribution Vd, Phase-I/Phase-II metabolism of drugs and example of toxicity, Role									
		of CYP enzymes, Drug's half-life and steady-state concentration. (3 L)									
							· ·				
	Rational design										
		of drug design (improvement of selectivity, improvement of ADMET profiles) with									
	examples of re						tion an				
	dissociation) in c	Irug design, Hig	h-throughp	out screenir	ig (HTS) me	ethod.	(3 L)				
	Computer-aided	Computer-aided drug design: Role of computer in drug design, Basic modeling									
	strategy, Virtual	strategy, Virtual screening, homology modeling, Structure-based drug desigr									
	Molecular dock	ing, Ligand-bas	sed drug	design, 3[	D-QSAR, 3	D-pharma	cophor				
	Database screer					•	(3 L				
	Biophysical Ch	•	0 0				,				
	Enzyme kinetics		hibition. In	troduction	of Enzyme	Enzvme-	substrat				
	Kinetics, Enzyme										
	Inhibitor, Alloste	,		,		,	•				
	studies of enzym		•				(3 L)				
	-				otio intorco	tiona hur	· · ·				
	Molecular Force										
	and hydrophilic f					actions, s					
	forces in proteins						(3 L				
	Techniques for	macromolecular					d salting				
		out, dialysis, sedimentation, electrophoresis and isoelectric focusing, gel filt									
	out, dialysis, se										
	out, dialysis, se and ion-exchang	e chromatograp					filtratio (3 I				
	out, dialysis, se and ion-exchang	e chromatograp			al instrume	ents to s	filtratio (3 I				
	out, dialysis, se and ion-exchang Concept genera	e chromatograp ation and appli	cations of	f biophysic			filtratio (3 l tudy th				
	out, dialysis, se and ion-exchang Concept genera Structure-Function	e chromatograp ation and appli on Inter-relation	cations of ships of b	f biophysic iomolecule:	s: Application	on of spea	filtratio (3 L tudy th ctroscop				
	out, dialysis, se and ion-exchang Concept genera Structure-Function instruments (UN	e chromatograp ation and appli on Inter-relation /-VIS, NMR, (	cations of ships of b CD, Mass	f biophysic iomolecule ;) in char	s: Application	on of spec of biom	filtratio (3 L tudy th ctroscop				
	out, dialysis, se and ion-exchang Concept genera Structure-Function instruments (UN Application of p	e chromatograp ation and appli on Inter-relation /-VIS, NMR, ( rotein crystallog	cations of ships of b CD, Mass jraphy and	f biophysic iomolecules ອ) in chara d XRD in ເ	s: Application acterization Inderstandir	on of spec of biom ng the str	filtratio (3 L tudy th ctroscop olecules ucture d				
	out, dialysis, se and ion-exchang Concept genera Structure-Function instruments (UN Application of p proteins, Applica	e chromatograp ation and appli on Inter-relation /-VIS, NMR, ( rotein crystallog ation of Isothern	cations of ships of b CD, Mass raphy and nal Titratio	f biophysic iomolecules ) in chara d XRD in u n Calorime	s: Application acterization Inderstandir try (ITC) in	on of spect of biom ng the str analysing	filtratio (3 l tudy th ctroscop olecules ucture o proteir				
	out, dialysis, se and ion-exchang Concept genera Structure-Function instruments (UN Application of p	e chromatograp ation and appli on Inter-relation /-VIS, NMR, ( rotein crystallog ation of Isothern Application of	cations of ships of b CD, Mass graphy and nal Titratio f different	f biophysic iomolecules i) in chara d XRD in u n Calorime gel-based	s: Application acterization Inderstandir try (ITC) in assays (S	on of spec of biom ng the str analysing DS-PAGE	filtratic (3 l tudy th ctroscop olecule ucture g protein E, Nativ				

CU	RRICULUM AND SYLLABUS FOR INTEGRATED MSC PROGRAM
Text Books,	1. An Introduction to Medicinal Chemistry by G L Patrick (Oxford)
and/or	2. Bioinformatics and Computational Biology in Drug Discovery and Development
reference	by William T. Loging (Cambridge)
material	3. The organic chemistry of drug design and drug action by Richard Bruce Silverman
	4. Principles of Physical biochemistry by Holde, Johnson and Ho
	5. Experimental biophysical Chemistry By Copeland, R. A.

	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	2	1	2	3	3	3	1
CO2	3	3	3	1	1	2	1	3	2	2	2	2
CO3	3	2	3	1	1	3	3	3	3	3	3	1
CO4	3	1	З	1	1	2	1	2	2	3	1	1
CO5	3	3	3	3	3	3	1	3	3	1	3	2
CO6	3	3	3	3	3	3	1	3	3	1	3	1

Course	Title of the	Program	Tota	I Number o	f contact ho	urs	Credit
Code	course	Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	hours	
		Electives					
		(PEL)					
CYE933	Bioorganic	PEL	3	0	0	3	3
	Chemistry						
	& Natural						
	Products						
Pre-re	quisites	CourseAs	ssessmentm	ethods:[Cor	ntinuousass	essment(C	A),mid-
			term	(MT) ander	nd term (ET)		
CYC401	, CYC503			CA+MT			
Course	<b>CO1</b> : To g	enerate co	ncept on tl	ne interdis	ciplinary in	terface lie:	s within
Outcomes	Chemistry a						
	CO2: To dev						
	CO3: To und						
	CO4: To lea				s of different	t terpenes	
	CO5: To kno						
	CO6: To kno		istry of Stero	ids in horm	ones		
Topics	Bioorganic	Chemistry:					18 L
Covered	Enzymes:						
	Chemical ar						
	and identification						
	and regulati						
	chemistry.						
	reversible a						
	models: Hos						
	prochirality,	biomimetic	chemistry,	crown et	her, crypta	tes, cyclo	
	calixarin.						(8 L)
	Examples	of some		enzyme	mechanism	is: chym	otrypsin,
	carboxypept						(3 L)
	Chemical mo						
	and other b			alytic antib	odies- Des	ign, synthe	
	evaluation of					<i>e</i> 1	(4 L)
	Enzyme cata		ions: Carbox	yiation and	aecarboxyla	ation. Isom	
	and rearrang	jement.					(3 L)

CU	RRICULUM AND SYLLABUS FOR INTEGRATED MSC PROGRAM	
	Natural Products Terpenoids:	18 L
	Classification, isoprene rule, general methods of isolation and s determination. Biogenetic pathway of mono and sesquiterpenes. Synt α-santonin, abietic acid, gibberellic acid, menthol, caryophyller longifolene. (6 L) <b>Alkaloids:</b>	hesis of
	Extraction, structure determination and chemistry of alkaloids special re to nicotine, piperine, papaverine, atropine and morphine.	eference (6 L)
	<b>Steroids:</b> Synthesis, stereochemistry and reactions of steroids. Cholesterol, biosynthesis, Sex hormones: Estrogens, androgens and progestin, D-V and reactions of steroid.	
Text Books, and/or	Suggested Text Books: 1. Principles of Biochemistry by Lehninger 2. Biochemistry by Voet & Voet	
reference materials	3. Asymmetric Synthesis of Natural products By Ari M P Koskinen (Wile Suggested Reference Books:	
	<ul> <li>4. Chemistry of Natural Products By S B Bhat, B. A. Nagasamp Sivakumar (Narosa).</li> <li>5. Chemistry of Plant Natural Products by S. K. Talapatra &amp; B. Ta</li> </ul>	
	(Springer)	

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	2	1	3	3	1	1	2
CO2	3	3	3	3	2	2	1	3	3	1	1	2
CO3	3	3	3	3	2	2	1	3	3	1	1	2
CO4	3	3	3	2	2	2	1	3	3	2	1	2
CO5	3	3	3	2	2	2	1	3	3	2	1	2
CO6	3	3	3	2	2	2	1	3	3	2	1	2

Course Code	Title of the course	Program Core (PCR) /Electives (PEL)	Total Lecture (L)	Number o Tutorial (T)	f contact ho Practical (P)	urs Total Hours	Credit		
CYE934	Advanced Stereochemistry and Structure Activity Correlation	PEL	3	0	0	3	3		
Pr	e-requisites	CourseAssessmentmethods:[Continuousassessment(CA),mid- term(MT) andend term (ET)]							
	CYC303	CA+MT+ET							

Course	JRRICULUM AND SYLLABUS FOR INTEGRATED MSC PROGRAM CO1: Learn about the three-dimensional structure of organic molecules, whic								
Outcomes	govern their reactivity in different reactions.								
	<b>CO2</b> : Advance stereochemistry helps to synthesize biological active compounds with better yield and minimum by-products.								
	CO3: In the field of drug design & drug delivery, insecticides and pesticides, new								
	bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science.								
	<b>CO4</b> : It helps to understand the basic knowledge in synthesis of organic molecule and to obey the guidelines of green chemistry principle.								
	<b>CO5</b> : With help of knowledge in stereochemistry and structural correlation, th								
	hurdle in stereochemical problem in industries in large scale production of polyme drug etc. could be solved.								
Topics Covered	<ol> <li>Advanced stereochemistry: Configarational analysis: Relative and absolut configuration.</li> <li>(2 L)</li> </ol>								
	2. Determination of relative configuration:								
	(i) Chemical correlation not affecting the chiral atom,								
	<ul> <li>(ii) Chemical correlation affecting bonds to the chiral atom in a 'know way'</li> </ul>								
	(iii) Correlation by asymmetric synthesis: Horeaus rule, Prelog's rule								
	Cram's rule (Felkin modification), and Sharpless rule								
	(iv) Physical methods: NMR, MS, IR, dipole moment, ORD, CD. (8L)								
	3. Optical rotation and optical rotatory dispersion: Preliminary concept abo								
	linearly polarised light (LP), RCP and LCP; circular birefringence; an circular dichroism and optical rotatory dispersion; Cotton effect; ORD								
	<ul> <li>ketones and Octant rule. (8 L)</li> <li>4. Conformation of acyclic and cyclic system (3-8 membered rings), decaling</li> </ul>								
	octalene, and bridged bicyclo systems; stability, reactivity and mechanism								
	Cortin Hammett principle and Winstein-Eliel equation (special emphasis of 5 and 6 membered rings with and without heteroatoms like O, S and N).								
	(8)								
	5. Quantitative relationship between structure and reactivity:								
	(i) Liner free energy relation: Hammett equation; Equilibrium and ration								
	in organic reactions; (ii) Separation of polar, steric and resonance:								
	(iii) Taft equation; (iv) Grunwald-Winstein equation.								
	(iv) Some application of structure-reactivity correlation study. (8 L)								
Text Books,	1. Stereochemistry of Carbon Compounds. Ernest L. Eliel. McGraw-Hill								
and/or	2. Basic Stereochemistry of Organic Molecules, Oxford University Press: Subrat								
reference	Sen Gupta								
material	<ol> <li>Stereochemistry Of Organic Compound; Principle and Applications by I Nasipuri</li> </ol>								
	4. Stereochemistry. Conformation and Mechanism. P. S. Kalsi								

POs COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	2	2	1	3	2	2	1	2
CO2	3	2	3	2	2	2	2	3	2	2	1	2
CO3	3	2	3	2	2	2	2	3	2	2	1	2
CO4	3	3	3	2	2	3	1	3	2	3	1	2
CO5	3	3	3	2	2	3	2	3	2	3	1	2