NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR

CURRICULUM & SYLLABUS

OF

Bachelor of Technology and Master of Technology (Dual Degree) in Chemical Engineering

2023 ONWARD ADMISSION BATCH

V0:

First Year Curriculum Recommended by members of UGAC	19.08.2023
First Year Curriculum Approved by the Chairman, Senate	19.08.2023
First Year Curriculum & Syllabus ratified in the 71st Senate meeting (Item No. 71.5(b))	18.12.2023
Entire Curriculum and Syllabus Recommended by UGAC	09.12.2024
Entire Curriculum and Syllabus Approved by the 73 rd Senate (Item No. 73.8)	23.03.2025

DEPARTMENT OF CHEMICAL ENGINEERING

Program Name: Bachelor of Technology and Master of Technology (Dual Degree) in Chemical Engineering

DETAILED CURRICULUM

CURRICULUM OF 2023 ONWARD UNDERGRADUATE ADMISSION BATCH FOR CHEMICAL ENGINEERING - B.TECH. AND M.TECH (DUAL DEGREE)

L= Lecture hour/ week; T= Tutorial hour/ week; S= Sessional/ practical hour/ week

C= Subject credit point; H= Subject contact hour/ week.

GROUP – 1 FIRST SEMESTER

Semester - I								
SI. No	Code	Subject	T	S	С	Н		
1	MAC01	Mathematics - I	Mathematics - I 3					
2	CSC01	Computer Programming	2	1	0	3	3	
3	XEC01	Engineering Mechanics	2	1	0	3	3	
4	XEC02	Basic Electrical and Electronics Engineering 3		0	0	3	3	
5	ESC01	Ecology and Environment	cology and Environment 2		0	2	2	
6	CYC01	Engineering Chemistry	3	0	0	3	3	
7	CSS51	Computer Programming Laboratory	0	0	3	2	3	
8	XES52	Basic Electrical and Electronics Engineering Laboratory	0	0	3	2	3	
9	CYS51	Engineering Chemistry Laboratory	0	2	1	2		
		TOTAL	15	3	8	23	26	

SECOND SEMESTER

Semester - II							
SI. No	Code	Subject	L	T	S	С	Н
1	MAC02	Mathematics - II	3	1	0	4	4
2	CSC02	Data Structure and Algorithms	2	1	0	3	3
3	PHC01	Engineering Physics	2	1	0	3	3
4	HSC01	Professional Communication	rofessional Communication 2 0				4
5	CSS52	Data Structure and Algorithms Laboratory	0	0	3	2	3
6	XES51	Engineering Graphics	0	1	3	3	4
7	PHS51	Engineering Physics Laboratory	0	0	2	1	2
8	XXS51	Extra Academic Activities	0	0	2	1	2
		TOTAL	9	4	12	20	25

GROUP - 2

FIRST SEMESTER

Sem	ester - I						
SI. No	Code	Subject	L	Т	S	С	н
1	MAC01	Mathematics - I	3	1	0	4	4
2	CSC01	Computer Programming	2	1	0	3	3
3	XEC01	Engineering Mechanics	2	1	0	3	3
4	PHC01	Engineering Physics	2	1	0	3	3
5	HSC01	Professional Communication	2	0	2	3	4
6	CSS51	Computer Programming Laboratory	0	0	3	2	3
7	XES51	Engineering Graphics	0	1	3	3	4
8	PHS51	Engineering Physics Laboratory	0	0	2	1	2
9	XXS51	Extra Academic Activities	0	2	1	2	
		TOTAL	11	5	12	23	28

SECOND SEMESTER

Semester - II							
SI. No	Code	Subject	Т	S	С	Н	
1	MAC02	Mathematics - II	3	1	0	4	4
2	CSC02	Data Structure and Algorithms	2	1	0	3	3
3	XEC02	Basic Electrical and Electronics Engineering 3				3	3
4	ESC01	Ecology and Environment 2			0	2	2
5	CYC01	Engineering Chemistry	3	0	0	3	3
6	CYS51	Engineering Chemistry Laboratory	0	0	2	1	2
7	CSS52	Data Structure and Algorithms Laboratory	0	0	3	2	3
8	XES52	Basic Electrical and Electronics Engineering Laboratory		0	3	2	3
		TOTAL	13	2	8	20	23

Semeste	er - III						
Sl. No.	Code	Subject	L	Т	S	С	Н
1	CHC301	Process Calculations	3	1	0	4	4
2	CHC302	Chemical Engineering Thermodynamics	3	1	0	4	4
3	CHC303	Fluid Mechanics	3	1	0	4	4
4	CHC304	Numerical Methods in Chemical Engineering	3	0	0	3	3
5	CYC331	Industrial Chemistry	3	0	0	3	3
6	CYS381	Instrumental Analysis Laboratory	0	0	3	2	3
7	CHS351	Fuel Laboratory	0	0	3	2	3
		TOTAL	15	3	6	22	24
Semeste	er - IV			•			
Sl.No.	Code	Subject	L	Т	S	С	Н
1	CHC401	Heat Transfer	3	1	0	4	4
2	CHC402	Mechanical Operations	3	1	0	4	4
3	CHC403	Mass Transfer- I	3	1	0	4	4
4	CHC404	Chemical Reaction Engineering	3	1	0	4	4
5	CHE4**	Depth Elective-1	3	0	0	3	3
6	CHS451	Reaction Engineering Laboratory	0	0	3	2	3
7	CHS452	Fluid Mechanics Laboratory	0	0	3	2	3
		TOTAL	15	4	6	23	25
Semeste	er - V						
Sl. No.	Code	Subject	L	T	S	С	Н
1	CHC501	Instrumentation and Process Control	3	1	0	4	4
2	CHC502	Mass Transfer- II	3	1	0	4	4
3	CHC503	Chemical Process Technology	3	1	0	4	4
4	CHC504	Industrial Safety and Risk Management	3	0	0	3	3
5	CHE5**	Depth Elective-2	3	0	0	3	3
6	CHS551	Heat Transfer Laboratory	0	0	3	2	3
7	CHS552	Mechanical Operations Laboratory	0	0	3	2	3
		TOTAL	15	3	6	22	24
Seme	ster - VI						
SI. No.	Code	Subject	L	Т	S	С	Н
1	HSC631	Economics and Accountancy	3	0	0	3	3
2	CHC601	Chemical Plant Design and Economics	3	0	0	3	3
3	CHC602	Petroleum Refining and Petrochemicals	3	1	0	4	4
4	CSC631	AI & ML	3	1	0	4	4
5	CHE6**	Depth Elective - 3		0	0	3	3
6	CHS651	Process Control Laboratory	0	0	3	2	3
7	CHS652	Mass Transfer Laboratory	0	0	3	2	3
8	CHS653	Chemical Process Equipment Design	0	0	3	2	3
		TOTAL	15	2	6	23	26
	ster – VII						
SI. No.	Code	Subject	L	Т	S	С	Н
1	MSC731	Principles of Management	3	0	0	3	3
2	CHC702	Transport Phenomena	3	1	0	4	4

CURRICULUM AND SYLLABUS FOR DUAL DEGREE IN CHEMICAL ENGINEERING

3	CH1001	Advanced Process Dynamics and Control	2	0	2	4	4
4	CHE7**	Depth Elective - 4	3	0	0	3	3
5	CH 901*	Depth Elective – I (MTech Basket)	3	0	0	3	3
6	YYO901*	Open Elective – 1 (MTech Basket of CSE/ME/BT/MA)	3	0	0	3	3
7	CHS751	Process Modelling and Simulation Laboratory	0	0	3	2	3
8	CHS752	Industrial Training / Internship and Seminar (6 weeks)	0	0	3	2	3
		TOTAL	15	1	9	24	27
Semes	ter – VIII						
SI.	Code	Subject	L	T	S	С	Н
1	CH2001	Computer-aided Design	4	0	0	4	4
2	CH2002	Advanced Materials for Chemical Engineering Applications	4	0	0	4	4
3	CH902*	Dept. Elective-II (MTech Basket)	3	0	0	3	3
4	CH903*	Dept. Elective-III (MTech Basket)	3	0	0	3	3
5	CH2051	Environment and Membrane Laboratory	0	0	4	2	4
6	CH2052	Industrial Project-I	0	0	6	3	6
7	CH2053	Technical Communication-I	0	0	0	1	0
		Total	0	0	20	20	12
Seme	ster – IX						
SI.	Code	Subject	L	Т	S	С	Н
1	CH3001	Multi-Scale Simulation of Chemical Processes	4	0	0	4	4
2.	CH3002	Advance Separation Processes	3	1	0	4	4
2	CH904*	Depth Elective - IV	3	0	0	3	3
3	CH3051	Industrial Project - II	0	0	12	6	12
4	CH3052	Technical Communication-II	0	0	0	1	0
		TOTAL	10	1	12	18	23
Seme	ester – X						
SI.	Code	Subject		Т	S	С	Н
1	CH4051	Dual Degree Capstone Project/Internship Thesis		0	24	12	24
2	CH4052	Project/Internship Seminar	0	0	0	2	0
3	CH4053	Grand Viva Voce	0	0	0	1	0
		TOTAL	4	0	24	15	24

CREDIT UNIT OF THE PROGRAM:

Semester	I+II	III	IV	V	VI	VII	VIII	IX	Х	TOTAL
Credit	43	22	23	22	23	24	20	18	15	210
Unit										

DEPTH ELECTIVE COURSE BASKETS

THE STUDENTS PRIMARILY WILL OPT FROM THE DEPTH ELECTIVE SUBJECT(S) THAT ARE OFFERED IN A PARTICULAR SEMESTER BY HIS/ HER OWN DEPARTMENT. HOWEVER, A STUDENT CAN OPT FOR DEPTH ELECTIVE SUBJECT(S) THAT ARE OFFERED BY OTHER DEPARTMENT IN A PARTICULAR SEMESTER, WITH THE PERMISSION/ CONSENT FROM HIS/ HER HEAD OF THE DEPARTMENT AND THE CONCERNED TEACHER OF THAT SUBJECT.

4th Semester

SI. No	Code	Subject				
1	CHE410	Fuels and Combustion				
2	CHE411	Non-conventional Energy Engineering				
3	CHE412	Colloids and Interface Engineering				
4	CHE413	Industrial Pollution Control and Treatment				

5th Semester

SI. No	Code	Subject
1	CHE510	Process Intensification and Membrane Technology
2	CHE511	Material Science and Engineering
3	CHE512	Energy Management and Process Optimization
	CHE513	Bioprocess & Bioreactor Engineering

6th Semester

Sl. No.	Code	Subject
1	CHE610	CFD Applications in Chemical Engineering
2	CHE612	Combustion Engineering
3	CHE613	Process Modelling, Simulation, and Optimization
4	CHE614	Treatment and management of water resources

7th Semester

SI. No	Code	Subject	
1	CHE710	Multiphase Flow	
2	CHE711 Pinch Technology for Process Heat Integration		
3	CHE712	Nanotechnology	
4	CHE713	Polymer Technology	
5	CHE720	Applied Microfluidics in Chemical Engineering	
6	CHE721	Waste Management and Resource Recovery	
7	CHE722	Innovation and Entrepreneurship in Chemical Processes	
8	CHE723	Fuel Cell Technology	

(M Tech Elective Basket)

SI. No.	Subject Code	Name of the Subject
1.	CH9010	Biochemical and Bio Engineering
2.	CH9011	Reactive Multiphase System
3.	CH9012	Advanced Process Integration and Optimization

8th Semester (M Tech Elective Basket)

SI. No.	Subject Code	Name of the Subject
1.	CH9020	Bubble and Droplet Dynamics
2.	CH9021	Environmental Engineering
3.	CH9022	Chemical Processes for Micro-electronic Fabrication
4.	CH9030	Advanced Fluid Dynamics
5.	CH9031	Circular Economy and Waste Valorization
6.	CH9032	Catalysis in Chemical Industry

9th Semester (M Tech Elective Basket)

Sl. No.	Subject Code	Name of the Subject
1.	CH9040	Biofuel Technology
2.	CH9041	Artificial Intelligence and Optimization for Chemical Processes
3.	CH9042	Sustainable Process Technology

DETAILED SYLLABUS (1st Year)

Sl. No	Code	Subject	L	Т	S	С	Н			
1	MAC01	Mathematics - I	3	1	0	4	4			
2	CSC01	Computer Programming	2	1	0	3	3			
3	XEC01	Engineering Mechanics	2	1	0	3	3			
4	PHC01	Engineering Physics								
5	CYC01	Engineering Chemistry	3	0	0	3	3			
6	ESC01	Ecology and Environment	2	0	0	2	2			
7	HSC01	Professional Communication	2	0	2	3	4			
8	MAC02	Mathematics - II	3	1	0	4	4			
9	CSC02	Data Structure and Algorithms	2	1	0	3	3			
10	XEC02	Basic Electrical and Electronics Engineering	3	0	0	3	3			
11	PHS51	Engineering Physics Laboratory	0	0	2	1	2			
12	CSS51	Computer Programming Laboratory	0	0	3	2	3			
13	XES51	Engineering Graphics	0	1	3	3	4			
14	CYS51	Engineering Chemistry Laboratory	0	0	2	1	2			
15	CSS52	Data Structure and Algorithms Laboratory	0	0	3	2	3			
16	XES52	Basic Electrical and Electronics Engineering Laboratory	0	0	3	2	3			
17	XXS51	Extra Academic Activities	0	0	2	1	2			
		TOTAL	24	7	20	43	51			

DETAILED SYLLABUS

Course	Title of the course	Program Core	Total Number of contact hours										
Code		(PCR) /	Lecture	Tutorial	Practical (P)	Total							
		Electives (PEL)	(L)	(T)		Hours							
MAC01	MATHEMATICS - I	PCR	3	1	0	4	4						
Pre-requisit	es	Basic concepts of	function, li	mit, differer	ntiation and i	ntegration	١.						
Course	CO1: learn the f	fundamentals of dif	fferential ca	Iculus of sir	gle and seve	ral variabl	es.						
Outcomes	CO2: learn the l	basic concepts of co	onvergence	of infinite s	eries.								
	CO3: understa	nd the basic cor	ncepts of i	integral cal	culus along	with its	various						
	applications.												
	CO4: acquire	the theoretical k	nowledge	of vector	calculus and	d its eng	gineering						
	applications.												
Topics	Functions of Single	Variable: Review	of limit, co	ntinuity an	d differentia	bility. Me	an value						
Covered	theorems: Rolle's Th	neorem, Lagrange's	Mean Valu	ie Theorem	(MVT), Cauc	hy's MVT,	Taylor's						
	theorem, Taylor's and Maclaurin's series. (8)												
	Functions of several variables: Limit, continuity and differentiability of functions of several												
	variables, partial derivatives and their geometrical interpretation, derivatives of composite												
	and implicit functions, derivatives of higher order and their commutativity, Homogeneous												
	function, Euler's theorem and its converse, Exact differential, Jacobian, Taylor's &												
	Maclaurin's series, Maxima and Minima, Necessary and sufficient condition for maxima and												
	minima (no proof). (11) Sequences and Series: Real sequences and their convergence, Series of positive terms,												
		·		_		•							
	Necessary and suffice		_		-		•						
	test, D Alembert's r	· · · · · · · · · · · · · · · · · · ·	root test, A	Aiternating	series, Leibni	tz's ruie, i	Absolute						
	and conditional conv	• • • •	fintogration	a ac a limit d	of a cum Ma	an valua t	hooroms						
	Integral Calculus: Re of integral calculus,		_										
	area of solids of re	_		•									
	convergence, Beta a		-	olai ioiiiis,	iiiipiopei ii	itegrais a	nu then						
	Multiple Integrals: E			integrals C	hange of ord	er of integ	ration						
	Change to better coo		•		-	_							
	integration.		10)	acable inte	.6. 4	5,							
	Vector Calculus: Ve	-	•	ts different	iability. Line	integral.	Surface						
	integral, Volume inte				-	_							
	vector form), Stok					•	_						
	applications.		(9)										
Text	Text Books:												
Books,	1. Kreyszig, E., Adv	vanced Engineering	g Mathemat	ics: 10th ed	ition, Wiley I	ndia Editic	n, 2010.						
and/or	2. Murray, D.A., D	ifferential and Inte	gral Calculu	s, FB & C Lir	mited, 2018.								
reference	3. Marsden, J. E; T	romba, A. J.; Weins	stein: Basic	Multivariab	le Calculus, S	pringer, 2	014.						
material	, , ,	, Schaum's Outline	of Vector A	nalysis, .Tat	a McGraw Hi	ll Educatio	n, 1980						
	Reference Books:												
		alculus-Vol-I & II, W	•	•									
	2. Thomas and Fin	nny: Calculus and A	nalytic Geor	metry, 11th	Edition, Addi	son Wesle	ey.						

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MAC01	CO1	2	3	2	3	1	1	-	-	1	1	1	2
	CO2	2	3	2	3	-	1	-	-	1	1	2	2
	CO3	2	3	2	3	-	1	1	-	-	2	2	2
	CO4	3	3	2	3	1	1	-	1	-	2	1	2

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Tot	al Number c	of contact ho	urs	Credit					
Code		(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives (PEL)	(L)	(T)	(P)	Hours						
CSC01	COMPUTER	PCR	2	1	0	3	3					
	PROGRAMMING	PCN		1	U	3	3					
F	Pre-requisites	Course Assessme	nt methods	(Continuous	s (CT), mid-te	rm (MT) a	nd end					
		assessment (EA))										
Basic kno	wledge of computer.	CT+MT+EA										
Course	• CO1: To unde	erstand basics of co	mputer pro	gramming, p	rogram flow	, and prog	ramming					
Outcom	es constructs.											
	• CO2: Develo	p concepts on bas	concepts on basic and complex data types, conditional and iterative									
	statements.											
		e the concepts of us										
		C programs that us			-							
		e user defined d	ata types i	ncluding st	ructures and	dunions	to solve					
	problems.											
Topics		: Phases of develop	•	•								
Covere	,, ,	and values. Char, l	_	id Signed da	ita types. Nu	ımber syst	ems and					
	,	Constants, Overflow										
	· · · · · · · · · · · · · · · · · · ·	C: Constants, Varia	ables, Expres	ssions, Oper	ators, and op	perator pre	ecedence					
	in C. (2L)											
		clarations, Input-O	utput State	ements, Cor	npound stat	ements,	Selection					
	Statements. (2L)	l D	D.			L:1						
	· · · · · ·	cal operators, Pred	edences. Re	epetitive sta	itements, w	niie const	ruct, Do-					
		For construct. (3L)	rave and ma	tricos (21)								
	, ,	Multidimensional arı er variables. Deck	•		na naintar	variables	Dointor					
		nples. Accessing a	-									
		erations in C. (6L)	irrays tillou	ign pointers	s. Pointer ty	pes, Polit	ters and					
	Dynamic memor											
		nming: Functions: 1	The prototyr	na daclaratio	on Function (definition						
	(3L)	illing. Functions.	ine prototyp	oc acciaratio	on, runction c	acimilion.						
	, ,	assing arguments to a function, by value, by reference. Scope of variable										
		e function calls, Tail recursion. (4L)										
		Sorting in arrays with an example of Bubble sort. Sorting in strings. (3L)										
		Linear search and b		•	_ 50 001	o • • · · · · · · · · · ·	(0-)					
	· ·	s in C: Structures	•		amples, dec	laration,	and use.					
		structures. Passin										

	structures. (4L) File input-output in C. Streams. Input, output and error streams. Opening, closing and reading from files. Programming for command line arguments. (3L)
Text Books,	Text Books:
1	
and/or	1. P. Deitel, H. Deitel. C How to Program. Pearson Education India, 7th Ed.
reference	2. B. W. Kernighan, Dennis M. Ritchie. The C Programming. Prentice Hall Software
material	Series, 2nd Ed.
	Reference Books:
	1. P. Dey and M. Ghosh. Computer fundamentals and programming in C. Oxford
	press, 2013.
	1. Y. Kanetkar. Let Us C. BPB Publications, Sixteenth edition, 2017.

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CSC01	CO1	2	2	1	-	1	2	-	-	-	-	-	-
	CO2	3	2	1	-	1	1	1	-	-	-	-	-
	CO3	2	2	1	-	-	2	-	-	-	-	-	-
	CO4	3	2	2	-	-	1	-	-	-	-	-	-
	CO5	3	1	2	-	1	2	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Drogram	Tot	al Number e	of contact ho	urc	Credit					
	Title of the course	Program		1	ı		Credit					
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P) [#]	Hours						
		(PEL)										
XEC01	ENGINEERING	PCR	2	1	0	3	3					
	MECHANICS											
Р	re-requisites	Course Assess	ment metho	ods (Continu	ious (CT), mid	d-term (M	T) and end					
				assessmen	t (EA))							
CT+MT+EA												
Course	CO1: Acquir	e knowledge of n	nechanics a	nd ability to	draw free bo	odv diagrai	ms.					
Outcome	·	knowledge of me		•								
	analysis.	Kilowicage of file	eriariles for	solving spec	ciai probiciii	Tine trass	and mame					
	·	ility to calculate centroid, moments of inertia for various shapes.										
	•	•										
		momentum and energy principles. ledge on virtual Work Principle and its application										
			•		plication							
Topics		chanics; measurer										
Covered	d Vectors and for	ce as a vector; R	esultant of	a system o	of forces on	a particle;	free body					
	diagram and cor	nditions of equilib	orium of a p	article; prol	blems on par	ticles; equ	illibrium of					
	particles in space	e. [2]										
	Resultant of a sy	stem of forces ar	nd couples o	on a rigid bo	dy; conditio	ns of equil	ibrium of a					
	rigid body; free	body diagrams of	f rigid bodie	es subjected	to different	types of c	onstraints;					
	simple space pro	blems of rigid bo	dies. [4]	-								
		tatic and kinetic f		olems involv	ing friction: t	heories of	friction on					
		power screw and	-		G 11 111, 1							
	· ·	•	_	-	d method of	sections [51					
	Simple trasses, t	Simple trusses; analysis of trusses by method of joints and method of sections. [5]										

	Centre of gravity and centre of mass; centroids of lines, curves and areas; first moment of area; second moment of area; polar moment of inertia; radius of gyration of an area; parallel axis theorem; mass moment of inertia. [4] Path, velocity, acceleration; rectilinear and curvilinear motion; motion of system of particles; introduction to the concept of plane kinematics of rigid bodies. [6] Newton's second law of motion; dynamic equilibrium and D'Alembert's principle; linear momentum; angular momentum; rectilinear and curvilinear motion; principles of workenergy and impulse—momentum; impact of system of particles; introduction to the concept of plane kinetics of rigid bodies. [12] Principle of Virtual Work, Solution of Problems on Mechanics using Principle of Virtual Work [3]
Text Books,	1) S P Timoshenko and D H Young, Engineering Mechanics, 5 th Edition
and/or	2) J L Meriam and L G Kraige, Engineering Mechanics, 5 th Edition, Wiley India
reference	3) F P Beer and E R Johnston, Vector Mechanics for Engineers
material	4) I H Shames, Engineering Mechanics

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	1	-	-	-	-	-	-	-	-	-	-	1
	CO2	1	1	1	1	-	-	-	-	-	-	-	1
XEC01	CO3	1	1	-	-	-	-	-	-	-	-	-	1
	CO4	1	2	-	-	-	-	-	-	-	-	-	1
	CO5	-	2	2	2	2	1	-	-	-	1	-	1

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Total Num	ber of conta	act hours		Credit						
Code		(PCR) /	Lecture	Tutorial	Practical	Total							
		Electives (PEL)	(L)	(T)	(P)	Hour							
						S							
PHC01	Engineering Physics	PCR	2	1	0	3	3						
Pre-requis	ites:	Course Assessm assessment (EA)	Course Assessment methods: (Continuous (CT), mid-term (MT) and end assessment (EA))										
NIL		CT+MT+EA	EA										
Course Outcomes		CO1: To realize and apply the fundamental concepts of physics such as superposition principle, simple harmonic motion to real world problems.											
		bout the quantum		•		and its a	pplications to						
		integrative overvie e, diffraction and p		cations of fu	ndamental o	ptical phe	nomena such						
	·	basic knowledge hrough optical fibe		the workin	g mechanisn	n of lase	rs and signal						
Topics	Harmonic Oscillat	ions - Linear sup	perposition	principle, Su	perposition	of two	perpendicular						
Covered	oscillations having	oscillations having same and different frequencies and phases, Free, Damped and Forced											
	· ·	ribrations, Equation of motion, Amplitude resonance, Velocity resonance, Quality factor,											
	sharpness of reson	ance, [8]											

Wave Motion: Longitudinal waves, Transverse waves, Wave equation, phase velocity and group velocity, Maxwell's equations, Electro-magnetic waves in free space. [3]

Introductory Quantum Mechanics - Inadequacy of classical mechanics, Blackbody radiation, Planck's quantum hypothesis, de Broglie's hypothesis, Heisenberg's uncertainty principle and applications, Schrodinger's wave equation and applications to simple problems: Particle in a one-dimensional box, Simple harmonic oscillator, Tunnelling effect. [8]

Interference & Diffraction - Huygens' principle, Young's experiment, Superposition of waves, Conditions of sustained Interference, Concepts of coherent sources, Interference by division of wavefront, Interference by division of amplitude with examples, The Michelson interferometer and some problems; Fraunhofer diffraction, Single slit, Multiple slits, Resolving power of grating. [13]

Polarisation - Polarisation, Qualitative discussion on Plane, Circularly and elliptically polarized light, Malus law, Brewster's law, Double refraction (birefringence) - Ordinary and extra-ordinary rays, Optic axis etc.; Polaroid, Nicol prism, Retardation plates and analysis of polarized lights. [5]

Laser and Optical Fiber - Spontaneous and stimulated emission of radiation, Population inversion, Einstein's A & B co-efficient, Optical resonator and pumping methods, He-Ne laser. Optical Fibre— Core and cladding, Total internal reflection, Calculation of numerical aperture and acceptance angle, Applications. [5]

Text Books, and/or reference material

TEXT BOOKS:

- 1. The Physics of Vibrations and Waves, H. John Pain, Willy and Sons
- 2. A Text Book of Oscillations and Waves, M. Goswami and S. Sahoo, Scitech Publications
- 3. Engineering Physics, H. K. Malik and A. K. Singh, McGraw-Hill.

REFERENCE BOOKS:

- 1. Vibrations and Waves in Physics, Iain G. Main, Cambridge University Press
- 2. Quantum Physics, R. Eisberg and R. Resnick, John Wiley and Sons
- 3. Fundamental of Optics, Jankins and White, McGraw-Hill
- 4. Optics, A. K. Ghatak, Tata McGraw-Hill
- 5. Waves and Oscillations, N. K. Bajaj, Tata McGraw-Hill
- 6. Lasers and Non-linear Optics, B. B. Laud, New Age International Pvt Lt

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
DUC01	CO1	3	2	1	1	1	-	-	1	-	-	-	1
	CO2	3	2	-	2	-	-	-	-	-	-	-	1
PHC01	CO3	3	2	2	2	1	1	1	1	1	-	1	1
	CO4	3	2	2	2	1	1	1	-	1	-	1	1

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Tota	al Number (of contact ho	ıırs	Credit						
Code	Title of the course	(PCR) / Electives	Lecture	Tutoria	Practical	Total	Creare						
		(PEL)	(L)	I (T)	(P)	Hours							
CYC01	Engineering Chemistry	PCR	3	0	0	3	3						
P	re-requisites	Course Assessm	ent methods	(Continuo	us (CT), mid-	term (MT)	and end						
	·			ssessment		, ,							
	None			CT+MT+E	A								
Course	CO1: Student	s will get the knowle	dge of fund	amentals a	s well indus	trial applic	ations of						
Outcome		dents will get the knowledge of fundamentals as well industrial applications of roleum products, organometallic compounds and others.											
	CO2: Student	s will be able to elucidate the structure of different organic compounds and											
	to analyze the str	icture-property correlation.											
	CO3: Student	s will be aware on th	will be aware on the role played by different metals in biological systems										
	and also the ecol	ogical impact of meta	s.										
	CO4: Students	s will be able to unde	rstand and a	analyze the	rmodynamica	al, kinetic a	as well as						
		aspects of chemical s	systems and	apply the	understandi	ng in the	technical						
	field.												
Topics		ORGANIC CHEMISTRY i Polymer chemistry and polymer engineering: Fundamental concent on polymer											
Covered	chemistry materials; polymer, retardant, ii. Petroleum technique of differe number. H iii. Structure Applicatio hypso-, h	 i. Polymer chemistry and polymer engineering: Fundamental concept on polymer chemistry; synthesis and application of important polymers, Rubber and plastic materials; vulcanization, structure-property correlation: Concept of Molecular weight of polymer, Glass transition temperature. Engineered polymer: Thermally stable, flame retardant, Conducting polymer. (5L) ii. Petroleum Engineering and oil refinery: Origin of petroleum, separation principle and techniques of distillation of crude oil, thermal and catalytic cracking of petroleum, uses of different fractions, knocking, anti-knock compounds, octane number and cetane number. High octane and Aviation fuel. Bio-diesel. (3L) 											
	INORGANIC CHE												
		cion Chemistry: Cryst		•			•						
		d magnetic properties	-	-			nistry.(5L)						
	_	nic Chemistry: Metal applicationof Organ		• .	· · · · · · · · · · · · · · · · · · ·	=	ilization of						
		oxidation state and		-	_								
	alkene	complexes, Variou			•		mportance.						
	(4L)	complexes, variou	is catalyti	c cycles	01 11140	, , , , , , , , , , , , , , , , , , ,	iiportanee.						
		ental Chemistry: Met	al toxicity (A	s, Hg, Pb ar	nd Cd) and its	remediati	ion (1L)						
	PHYSICAL CHEMI	STRY											
		Thermodynamics: 2	nd law of th	nermodvna	mics: Concer	ot of therr	nodynamic						
		Carnotand reverse C		•	•		•						
		dependence of entro			_								
	-	nponent system. Cryo					-						
ı	ii. Chemical	Kinetics:Rate expr	ession of	Reversible	reaction, p	parallel re	eaction,and						

iii.

Enzyme catalysis.(2L)

Consecutive reaction with proper examples. Temp effect on reaction rate.(3L)

Catalysis: Types of catalysis, Rate expression for Catalysed reaction, Acid-base and

	iv. Electrochemistry: EMF, Nernst Equation, Application of electrochemistry in chemical processes. Electrochemical cell, Fuel cell, Li-ion battery (3L).
Text Books,	Suggested Text Books:
and/or	(i) Physical Chemistry by P. Atkins, Oxford
reference	(ii) A guidebook to mechanism in Organic chemistry: Peter Sykes; Pearson Edu.
material	(iii) Inorganic Chemistry Part-I & II, R. L. Dutta, The new book stall
	Suggested Reference Books:
	Organic Chemistry:
	(i) Basic stereochemistry of organic molecules: S. Sengupta; Oxford University press
	(ii) Engineering Chemistry: Wiley
	(iii) Elementary Organic Spectroscopy: William Kemp, ELBS with Macmillan
	Inorganic Chemistry:
	(i) Inorganic Chemistry: Principle structure and reactivity, J. E. Huheey, E. A. Keiter and R. L. Keiter, Pearson Education
	(ii) Bioinorganic Chemistry Inorganic Elements in the Chemistry of Life: An Introductionand
	Guide, 2nd Edition, Wolfgang Kaim, Brigitte Schwederski, Axel Klein.
	(iii) Inorganic Chemistry Fourth Edition, Shriver & Atkins, Oxford
	Physical Chemistry:
	(i) Physical Chemistry by G.W Castellan
	(ii) Physical Chemistry by P. C. Rakshit

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CVC 04	CO1	1	2	-	-	-	-	-	-	-	-	-	-
	CO2	1	-	-	-	-	-	2	-	-	-	-	-
CYC 01	CO3	1	2	1	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	1	2	-	1	ı	-	1	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program	Tot	al Number c	of contact ho	urs	Credit					
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P) [#]	Hours						
		(PEL)										
ESC01	Ecology and	PCR	2	0	0	2	2					
	Environment											
Р	re-requisites	Course Assess	ment metho	ods (Continu	ious (CT), mid	d-term (M	T) and end					
		assessment (EA))										
	NIL	CT+MT+EA										
Course	CO1: Under	CO1: Understand the importance of environment and ecosystem.										
Outcome	es • CO2: Und	erstand the fu	ndamental	aspect o	f pollutant	tracking	and its					
	implementa	ation in natural an	d anthropo	genic polluti	ion of air and	l water sys	stem.					
	CO3: Under	stand the scientif	ic basis of lo	cal and as v	vell as global	issues.						
	CO4: Apply	of knowledge to o	develop sust	tainable solu	ıtion.							
Topics	UNIT – I: INTRO	UNIT – I: INTRODUCTION (2)										
Covered	Multidisciplinary	Multidisciplinary nature of Environmental Studies: Definition, Scope, and Importance.										

UNIT-II: FUNDAMENTALS OF ECOLOGY

(9)

Definition, Components of Environment; Fundamentals of Ecology and Ecosystem; Components and Classification of Ecosystem; Energy flow in Ecosystem: Tropic level, Food Chain, Food Web, Ecological Pyramid; Biogeochemical cycles: Carbon, Nitrogen, Sulphur, Phosphorus, and Water Cycle; Biosphere and Biodiversity; Conservation.

UNIT-III: FUNDAMENTALS OF ENVIRONMENT (10)

Environmental Pollution: Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Solid Wastes, and Natural hazards: Floods, earthquakes, cyclones, and landslides.

Environmental Issues: Climate change and global warming; acid rain; and ozone layer depletion.

Environment Quality: Ambient air quality standards, Water quality parameters and standards: pH, Turbidity, Hardness, Sulphate, Phosphates, Iron, Dissolved Oxygen, BOD, and COD.

UNIT-IV: NATURAL RESOURCES

(3)

Mineral Resources, Energy Resources: Conventional and Non-Conventional.

UNIT- V- GREEN TECHNOLOGY & ENVIRONMENTAL ETHICS (4)

Sustainability: Carbon Sequestration, Green building practices, Green computing; Carrying capacity; and Environment Protection Acts/laws.

Text Books, and/or reference material

- 1. A Basic Course in Environmental Studies. Deswal & Deswal. Pub. Dhanpat Rai & Sons
- 2. Ecology. Odum. Pub. Oxford & IBH
- 3. Environmental Engineering. Peany et.al. Pub. McGraw Hill
- 4. A Text Book of Environmental Engg. Venugpal Rao. Pub. PHI
- 5. A Basic Course in Environmental Studies. Deswal & Deswal. Pub. Dhanpat Rai & Sons
- 6. Environmental Studies. Bharucha. Pub. University of Press
- 7. Environmental Chemistry and Pollution, S. S. Dara & D. D. Mishra, S. Chand Publishing

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	-	-	-	-	-	2	-	-	-	-	-
ESC01	CO2	1	-	-	-	-	-	2	-	-	-	-	-
	CO3	2	-	-	-	-	-	2	-	-	-	-	-
	CO4	1	-	3	-	-	2	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Total Number of contact hours							
Code		(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
HSC01	Professional	PCR	2	0	2	4	3			
	Communication									

None CO1: Learners will acquire linguistic proficiency in terms of improvement in their listening, speaking, reading, and writing skills. CO2: Learners will acquire better communicative ability. CO3: The course will help learners improve their social connectivity skill.
listening, speaking, reading, and writing skills. • CO2: Learners will acquire better communicative ability.
Topics Vocabulary
Topics overed 1. Word Formation, Use of Prefixes and Suffixes (1) 2. Synonyms, Antonyms (1) 3. Prefixes and Suffixes from Foreign Languages, Words from Foreign Languages (1) 4. Abbreviations and Acronyms (1) 5. Technical Vocabulary (1) Grammar 1. Identifying Common Errors in Articles and Prepositions (1) 2. Common Errors in Noun-Pronoun Agreement and Subject-Verb Agreement (1) 3. Misplaced Modifiers and Tenses (1) 4. Redundancies and Clichés (1) Reading 1. Reading and Its Importance, Techniques of Effective Reading (1) 2. Improving Comprehension Skills, Techniques for Good Comprehension (1) 3. Skimming and Scanning (1) 4. Comprehension, Intensive and Extensive Reading (2) Writing 1. Sentence Structures, Phrases and Clauses, Punctuation (2) 2. Organising Principles of Paragraphs (2) 3. Formal Letters, Letters of Complaint, Requisition Letters, Job Application, and Résumé (2) 4. Nature and Style of Sensible Writing, Defining, Describing, Classifying, Providing Examples and Evidence (2) 5. Essay Writing (2) 6. Précis Writing (2) 7. Report Writing (2) Oral Communication 1. Listening Comprehension (4)
 Pronunciation, Intonation, Stress, and Rhythm (4) Communication at the Workplace (4) Everyday Conversation (4)
5. Group Discussion (4)
6. Interviews (4) 7. Formal Presentations (4)
tt Books, Text Book:
and/or 1. English for Engineers –Sudharshana & Savitha (Cambridge UP)
ference Reference Books:
 English—Kulbhushan Kumar (Khanna Book Publishing) Remedial English Grammar—F. T. Wood (Macmillan)

CURRICULUM AND SYLLABUS FOR DUAL DEGREE IN CHEMICAL ENGINEERING

2023

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
HSC01	CO1	1	ı	1	1		1		1	2	3	1	
пэсот	CO2	1			1		2		2	2	3	2	
	CO3				1		3		3	3	3	2	

Correlation levels 1, 2 or 3 as defined below:

			1										
Course	Title of the course	Program	Tot	al Number o	of contact ho	urs	Credit						
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total							
		Electives	(L)	(T)	(P)	Hours							
		(PEL)											
MAC02	MATHEMATICS - II	PCR	3	1	0	4	4						
F	Pre-requisites	Course Assessm	nent metho	ds (Continuc	ous (CT), mid	-term (MT) and						
		end assessmen	t (EA))										
Basic co	ncepts of set theory,	CT+MT+EA											
differe	ntial equations, and												
	probability.												
Course	CO1: learn the b	asic concepts of	linear algeb	ora and be a	ble to apply	the same	to solve						
Outcomes	various engineer	ing problems.											
	• CO2: underst	and fundament	als of ord	dinary diffe	erential equ	ations a	nd their						
	applications.												
	CO3: acquire the theoretical knowledge of Fourier Series, Fourier & Lapla												
	transforms, and												
	CO4: learn the b	asic concepts of	probability [•]	theory.									
Topics	Introduction to Algel	braic structures:	Group, sub	group, ring,	, subring, int	egral don	nain, and						
Covered	field. (3)	Introduction to Algebraic structures: Group, subgroup, ring, subring, integral domain, and field. (3)											
	Linear Algebra: Vecto	Linear Algebra: Vector spaces over field, linear dependence and independence of vectors,											
	linear span of a set of vectors, basis and dimension of finite dimensional vector space,												
	elementary row/column operations, rank of a matrix, solutions of system of linear												
	(homogeneous and	non-homogen	eous) equ	ations, eig	genvalues a	ınd eigei	nvectors,						
	characteristic polyno	mials, Cayley-Ha	milton the	orem (with	out proof),	Diagonaliz	ation of						
	matrices. (15)												
	Ordinary Differentia	I Equations (OI	DE): Review	w of first	order ODE,	Picard's	theorem						
	(Statement Only), Of	DE of first order	and of the	first degree	e (exact ODE	E, rules fo	r finding						
	integrating factors),	ODE of first ord	der and of	f the highe	r degree (Ol	DE solvab	le for x,						
	solvable for y; Clairau	•	_				-						
	linear ODE with cons				•		•						
	dependence of sol					multaneoเ	is ODEs						
	(dx/P = dy/Q =		-	dy/dt = d	(x + dy),	propert	ies of						
	nonlinear ODEs, pha			,	(18)								
	Fourier series: Piece		•	-									
	interval, Dirichlet con	_	ence of Fou			and cosir	ie series,						
	Complex form of Four		,	(4	="								
	Fourier Transforms:												
	Integrals, Fourier Tra		inversion f	ormula, Pro	operties of F	-ourier Tr	ansform,						
	Convolution.	(7)					c						
	Laplace Transforms:	•		s Properties	s, inverse La	apiace tra	nstorms,						
	Convolution theorem	• •		المائمة المائم		ن اجري	۱ ۱						
	Probability: Random		-		ns (discrete	and con	unuous),						
Tayet Daral	Binomial, Poisson, Un	norm and Norma	ai distributio	ons. (5)									
Text Books		duanced Francisco	oring Math	omotics: 10	th adition va	المال المال	. Fdi±:						
and/or		dvanced Engine	ering Math	ematics: 10	edition, V	viiey india	a Edition						
reference	(2010).	or olaobra and 't	c annl:+:-	nc / / + h	on\ Themse	~ (200C)							
material	2. Strang, G., Line	_		•	•	-	na Harras						
	-	ntroductory Cou	rse in Diffe	rential Equa	itions, Knosia	a Publishir	ig House						
	(2021).	togral Transfer	cand Thair	: - : - : - : - : - : - : - : - : -	CDC D**** /	1005)							
	4. Debnath, L., In	tegral Transforms	s and their	Applications	, CKC Press (1995).							

5. Baisnab, A.P., Jas, M., Elements of Probability and Statistics, McGraw Hill Education (2017).

Reference Books:

- 1. Kumaresan, S., Linear algebra A Geometric approach, Chaukhamba Auriyantaliya (2017).
- 2. Ross, S.L., Differential Equations, 3rd Edition, Wiley Student Edition (2017).
- 3. Shivamoggi, A., Integral Transforms for Engineers, PHI (2003).
- 4. Grinstead, C.M., Snell, J.L., Introduction to probability, American Mathematical Society (2012).

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	3	2	1	2	-	2	-	-	-	1	2
MAC02	CO2	3	3	2	2	2	-	2	-	-	1	-	2
IVIACUZ	CO3	3	3	2	2	3	1	1	-	1	1	1	2
	CO4	3	2	1	3	2	1	1	1	1	-	-	2

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program	Tot	al Number c	of contact ho	urs	Credit					
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P)	Hours						
		(PEL)										
CSC02	Data Structure and	PCR	2	1	0	3	3					
	Algorithms											
	Pre-requisites	Course Assessm		ds (Continuc	ous (CT), mid	-term (MT) and					
		end assessment										
CSC01 (Com	outer Programming)	CA+ MT + ET [C	A: 15%, MT	: 25%, ET: 60	0%]							
Course	 CO1: Understandi 	-	-		ct data type	s, data st	ructures,					
Outcomes	'0' ' ' ' '	algorithms and time complexity analysis of algorithms.										
	CO2: Implementation of different abstract data types (array, linked list, stack, c											
		tree, graph).										
	CO3: Implementa		t sorting ar	nd searching	g techniques	s along w	ith their					
	performance evaluati											
	CO4: Analysis of t	the suitability/co	mpatibility	of different	data struct	ures base	d on the					
	types of applications.											
	CO5: Design and d	•			•							
Topics	Introduction: Abstrac	,, ,	• •		•		•					
Covered	memory allocation,	-	-	-	-	-						
	Asymptotic notations			g Theta nota	itions, Impac	t of data s	structure					
	on the performance of	•					. ,					
		Array: Array as an ADT, Single and multi-dimensional array, Memory representation (row major and column major) of array, Address calculation for array elements. (2L)										
	major and column ma	ijor) ot array, Add	aress caicula	ation for arra	ay elements.	(2L)						
	Limbord links Limbord link	as an ADT Man	المممالية بسما	اممام اممام	la satian fan	مالموناما	امميلميا ا					
	Linked list: Linked list	-	•				-					
1	list versus array, Types of linked lists: singly linked list, doubly linked list and circular linked											

	list, Operations on linked list: creation, display, insertion and deletion (in different positions),
	Concatenation, Searching, Sorting, Applications of linked list: Representations and
	operations on polynomials, sparse matrices, etc., Array vs. Linked List.
	(6L)
	Stack: Stack as an ADT, Push and pop operations on stacks, Array implementation of stack,
	Linked list implementation of stack, Applications of stack: Recursion, Function call,
	Evaluation of postfix expression using stack, Conversion of infix to postfix using stack.
	(5L)
	Queue: Queue as an ADT, Enqueue and dequeue operations, Array implementation of
	queue, Limitation of array implementation, Circular queue, Linked list implementation of
	queue, Priority queue. (4L)
	Binary Tree: Binary Tree, Definition and properties, Representation of binary tree in
	memory: linked representation, array representation, Binary tree traversal (Preorder,
	Inorder and Postorder), Binary search tree, Heap (8L)
	Searching Algorithms: Linear search and binary search. (2L)
	Sorting Algorithms: Selection sort, Insertion sort, Quick sort, and Merge sort. (5L)
	Graphs Algorithms: Graph representation using Adjacency matrix and Adjacency list,
	Breadth First Search and Depth First Search algorithms. (4L)
Text Books,	Text Books:
and/or	1. R. F. Gilberg and B. A. Forouzan, "Data Structures: A pseudocode approach with C",
reference	2nd Edition, CENGAGE Learning.
material	2. A. V. Aho, J. D. Ullman and J. E. Hopcroft, "Data Structures and Algorithms", Addition
	Wesley.
	3. Lipschutz, "Data Structures (Schaum's Outline Series)", Tata Mcgraw Hill.
	4. E. Horowitz, S. Sahni, S. Anderson-Freed, "Fundamentals of Data Structures in C",
	Universities Press; Second edition (2008).
	Reference Books:
	1. Y. Langsam, M. J. Augenstein and A. N. Tanenbaum, "Data Structures using C and
	C++", Pearson, 2006.
	2. Knuth, Donald E. The Art of Computer Programming. 3rd ed. Vols 1&2. Reading, MA:
	Addison-Wesley, 1997. ISBN: 0201896834. ISBN: 0201896842. ISBN: 0201896850.
	3. Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley 2005 ISBN-13: 978-
	0321295354.

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	-	1	1	1	-	-	-	-	-	-	-
	CO2	3	2	1	2	2	-	-	-	-	-	-	1
CSC02	CO3	3	2	1	2	2	-	-	-	-	-	-	1
	CO4	3	3	2	3	3	-	-	-	-	-	-	1
	CO5	3	3	3	3	3	-	-	-	-	-	-	2

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Tota	l Numbor	of contact h	OURC	Credit
Course	Title of the course	Program Core	TULA	number	or contact in	ours	Credit
Code		(PCR) / Electives	Lecture	Tutori	Practical	Total	
		(PEL)	(L)	al (T)	(P)	Hours	
XEC02	Basic Electrical and	PCR	3	0	0	3	3
	Electronics						
	Engineering						

	Pre-requisites	Course Assessment methods					
(10+2)	level mathematics and physics	CT+MT+EA					
Course	CO1: Learn the fundamentals of elect	tric circuits and analyze the circuits using laws and					
Outcomes	network theorems.	,					
	CO2: Gain the knowledge about mag	netic circuits, electromagnetism and the basics of					
	generation of alternating voltage.						
	CO3: Understand the behaviour of sing						
	CO4: Understand the fundamentals of	semiconductor devices.					
	,	istics of transistor-based electronic circuits.					
	CO6: Evaluate operational amplifier-ba						
Topics	-	ns, Fundamentals of Electric Circuits: Ohm's laws,					
Covered	-	d Dependent sources, Analysis of simple circuits. (4)					
		position Theorem, Thevenin's Theorem, Norton's					
	Theorem, Maximum Power Trans	• •					
		ndamental laws of electromagnetic induction, Self					
	and mutual inductances, Solution	e and current, E.M.F. equation, Average and R.M.S.					
		nce, Phasor representation of alternating quantity,					
		nce in series and parallel R-L-C circuits. (6)					
	·	of 3-phase system, Generation of 3-phase voltages,					
		star and delta connected systems, 3-phase balanced					
	and unbalanced circuits. (3)	учин алы асты сотпоста суссото, с ртасс жатапсас					
	• •	ction, working and V-I characteristics of diode, Zener					
	diode, Zener diode as a voltage re	· · · · · · · · · · · · · · · · · · ·					
	7. Transistors: Introduction to BJT	, FET, MOSFET; CMOS, working principle, and V-I					
	characteristics of Transistors, bia	sing of BJT circuits-fixed bias, emitter bias, feedback					
	bias, voltage divider bias, transist	or as an amplifier. (8)					
	8. Operational amplifier: Introducti	on, applications: inverting, non-inverting amplifier,					
	unity follower, integrator, differe	- ' '					
	9. Introduction of logic gates, memo	ory: ROM, RAM. (3)					
Text Books,	TEXT BOOKS						
and/or		y by Hughes, Pearson Education India.					
reference		c Circuit Theory, 11/e, 2012, Pearson: Boylestad &					
material	Nashelsky.	anlications D. D. Chattanadhusu D. C. Dakshit Nov.					
		oplications By D. Chattopadhyay, P. C. Rakshit; New					
	Age Int. Publication. REFERENCE BOOKS						
		H. Cotton, Reem Publication Pvt. Ltd.					
	<u>-, , </u>	ils by Vincent Deltoro, Pearson Edu. India.					
	3. The Art of Electronics 3e, by Paul H						
	4. Electronics - Circuits and Systems,						
	•	, Devices & Applications (8e) by Thomas L. Floyd &					
	David M. Buchla.	, , , , , , , , , , , , , , , , , , , ,					
<u> </u>							

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	3	3	3	3	1	1	1	1	1	1	1
	CO2	3	3	3	3	2	1	2	1	1	1	1	1
XEC02	CO3	3	3	3	3	3	2	2	1	1	1	1	1
AECUZ	CO4	2	3	2	2	-	1	-	-	-	-	-	1
	CO5	3	2	1	2	2	1	-	-	2	-	-	1
	CO6	3	2	2	2	3	-	-	-	2	-	-	1

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Tot	al Number c	of contact ho	urs	Credit					
Code		(PCR) / Electives	Lecture	Tutorial	Practical	Total						
		(PEL)	(L)	(T)	(P)	Hours						
CSS51	COMPUTER											
C3331	PROGRAMMING	PCR	0	0	3	3	2					
	LABORATORY											
Р	re-requisites	Course Assessmen	nt methods	(Continuous	s (CT) and en	d assessm	ent (EA))					
	NIL			CT+EA								
Course	CO1: To under	stand the principle o	f operators,	loops and b	ranching sta	tements.						
Outcome	es CO2: Impleme	ntation of function, recursion, arrays, and pointers based several types of										
	assignments.											
	CO3: To detail	out the operations o	f strings.									
	CO4: To unders	CO4: To understand structure and union.										
		CO5: Application of C-programming to solve various types of problems.										
Topics	•	List of Experiments:										
Covered	•	expression evaluation										
		ns on conditional statements and branching										
		s on iterations/loops.										
		olications of Arrays										
		pasics of functions ar	•									
	_	string using array and	d pointers.									
	7. Programs on											
	_	structures, union.										
	9. Programs on F	•										
	10. Case Studies.											
Text Bool		III -+ II- CII DDD D. I-II	:+: C:		2017							
and/or reference		"Let Us C", BPB Publ				2010						
		d, "Programming wi										
materia	_	amy, "Computing Fu		and C Progr	amming , ivi	CGIAW HIII						
	Education; Second edition, 2017. Reference Books:											
		s. 1. Ghosh, "Computer	fundament	tals and nro	gramming in	C" Ovford	Inress					
	2013.	i. Gilosii, Computer	raniamien	iais and pro	51 411111111111111111111111111111111111	c , Oxioit	i piess,					
		omputer fundament	als and nro	gramming in	C". Oxford r	ress.						
	2013.	apacar randament	all all a pro	۱۱۱ ها ۱۱۱۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	, calora p	555,						
		3. Schaum's Outline, Programming with C.										

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	3	2	-	-	2	-	ı	-	1	1	1
	CO2	2	2	1	-	-	1	-	-	-	-	-	-
CSS51	CO3	3	2	2	-	-	1	-	-	-	-	-	-
	CO4	2	3	2	-	-	2	1	-	-	-	-	-
	CO5	3	3	3	-	1	2	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title of the	Program	Total Num	ber of conta	ct hours		Credit				
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total	1				
		/ Electives	(L)	(T)	(P)	Hours					
		(PEL)									
PHS51	Physics	PCR	0	0	2	2	1				
	Laboratory										
Pre-requis	sites	Course Asses	sment methor	ods: (Continu	ous evaluatio	n (CE) and ϵ	end				
		assessment (EA))								
NIL		CE+EA									
Course	CO1: To reali	ze and apply dif	ferent techn	iques for me	asuring refract	tive indices	of				
Outcomes											
		lize different types of waveforms in electrical signals using CRO.									
		erstand charging									
		derstand interference, diffraction and polarization related optical									
	phenomena.			_							
		ire basic knowle				5.					
Topics		efractive index of		•	•						
Covered		the refractive i		•	• .						
		ition of amplitu	•	•	rical signals by	/ oscillosco _l	oe.				
	•	he characteristic									
		rewster's law/N		•	τ.						
	•	he diffraction of		•							
	•	he interference	0 ,	•	apparatus.						
		ine numerical a		otical fiber.							
Tout or d/		ination of Planck constant.									
Text and/ reference		oks: ok on Practical P	hysics K C	Mazumdar	and B. Chash						
material	•		•	. ividZuiiiùdi	aliu D. GilOSII						
material	Z) Practical P	2) Practical Physics – Worsnop and Flint									

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	1	-	-	-	-	-	2	1	-	1
	CO2	3	2	1	-	-	1	-	-	2	1	-	1
PHS51	CO3	3	1	-	-	-	-	-	-	2	1	-	1
	CO4	3	2	-	1	-	1	1	-	2	1	-	1
	CO5	3	2	1	-	1	1	1	-	2	1	1	1

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Ti	tle of the course	Program Core	Tota	al Number c	of contact ho	urs	Credit				
Code			(PCR) /	Lecture	Tutorial	Practical	Total					
			Electives (PEL)	(L)	(T)	(P)	Hours					
CYS51		CHEMISTRY	PCR	0	0	2	2	1				
		LABORATORY										
P	re-re	quisites	Course Assessi	ment metho	ds (Continu	ous (CT) and	end asses	sment				
					(EA))							
	N	one			CT+EA							
Course)	CO1: To lear	n basic analytical to	echniques u	seful for en	gg application	ns.					
Outcome	es	• CO2: Synthe	esis and characteriz	ation meth	ods of few	organic, inor	ganic and	polymer				
		compounds	of industrial impor	tance.								
		• CO3: Learn	chromatographic s	eparation m	ethods.							
		• CO4: Applic	ations of spectrosc	opic measur	rements.							
Topics		 Experiment 	s based on pH me	etry: Detern	nination of	$\ dissociation$	constant	of weak				
Covered	d	acids by pH										
		•	s based on conduc	•		etermination	n of amou	nt of				
		•	ductometric titratio									
			of metal ion: Estima			-						
			of metal ion: Determ. of total hardness of water by EDTA titration. and characterization of inorganic complexes: e. g. Mn(acac) ₃ , Fe(acac) ₃ , cis-									
		•		_	•							
			o)copper (II) mono	•				ik etc.				
		•	nd charact. of orgai f polymer: polymet	•	_	enzylideneac	etone.					
		,	of Beer-Lamberts	•	•	of amount of	of iron nro	cant in a				
		supplied so		iaw and det	terrimation	or amount c	n non pre	sent in a				
		• •	raphy: Separation	of two amin	o acids by p	aper chroma	tography					
		10. Determinat	ion of saponification	n value of fa	at/ vegetabl	e oil						
		Suggested Text	Books:									
		1. Vogel's Quantitative Chemical Analysis (6th Edition) Prentice Hall										
			sical Chemistry Exp		•							
		-	ve Practical Organio	Chemistry:	Qualitative	Analysis By \	/. K. Ahluv	valia and				
		S. Dhingra										
		Suggested Refer										
			nistry By R.C. Bhat	-								
		2. Selected expe	eriments in Physical	Chemistry E	By N. G. Mul	kherjee						

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	1	-	1	-	-	-	-	-	-	-	-
CVCE1	CO2	-	1	-	1	1	2	-	-	-	-	-	-
CYS51	CO3	2	-	-	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	1	1	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Tot	al Number o	of contact ho	urs	Credit						
Code		(PCR) / Electives	Lecture	Tutorial	Practical	Total							
		(PEL)	(L)	(T)	(P)	Hours							
XES51	ENGINEERING GRAPHICS	PCR	1	0	3	4	2.5						
Р	re-requisites	Course Assessme	Course Assessment methods (Continuous (CT) and end assessment (EA))										
	NIL			CT+EA									
Course	• CO1: Ability of	mental visualization	n of differen	t objects									
Outcome	es • CO2: Theore	tical knowledge o	f orthogra	phic projec	ction to so	lve probl	ems on						
	one/two/thre	e dimensional object											
	• CO3: Able to r	• CO3: Able to read/interpret industrial drawing and to communicate with relevant people											
Topics	Graphics as lang	raphics as language of communication; technical drawing tools and their up-keep; types											
Covered	d of lines; construc	of lines; construction of geometrical figures; lettering and dimensioning. [6]											
	Construction and	d use of scales; cons	struction of	curves of e	ngineering in	nportance	such as						
	curves of conic	section; spirals, cy	cloids, invo	lutes and d	lifferent loci	of points	; use of						
	equations for dra	wing some curves. [[9]										
		netry: necessity and	•	•		-							
		e planes; coordinate											
		ent quadrants, viz. 1		-			_						
		rojection of lines an	•		•								
		nclination of lines v	•			iuxiliary p	rojection						
	· · · · · · · · · · · · · · · · · · ·	nd planes; auxiliary p		•									
	•	imple regular solic	•	sms, cubes	, cylinders,	pyramids	, cones,						
		heres, hemi-spheres											
		section by perpend	licular plane	es; sectional	views; true s	snapes of	sections.						
	[6]		. 1 1		l. (160 l Di	c) [2]							
		nniques; internation	al and natio	nai standard	is (ISO and Bi	5). [3]							
T	Freehand graphic			1									
Text and/		Drawing and Graphi	cs – K Venu	gopai									
referenc	, ,	Drawing – N D Bhat											
materia	erial 3) Practical Geometry and Engineering Graphics – W Abbott												

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	1	-	-	1	1	-	-	1	-	1	1	-
XES51	CO2	1	1	-	-	-	-	-	-	-	-	-	-
	CO3	1	-	1	-	-	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title	of the course	Program Core	Tota	al Number c	of contact ho	urs	Credit				
Code			(PCR) /	Lecture	Tutorial	Practical	Total					
			Electives (PEL)	(L)	(T)	(P)	Hours					
XES52	Bas	ic Electrical	PCR	0	0	3	3	2				
	and	Electronics										
	La	aboratory										
Pr	re-requ	isites	Course Assessr	ment metho	' - '	ous (CT) and	end asses	sment				
					(EA))							
	NIL				CT+EA							
Course	C	O1: Learn to an	alyse the electric circuits using network theorems.									
Outcome	es C	O2: Understand	I the characteristics of fluorescent lamp and compact fluorescent lamp.									
	C	O3: Analyze the	behaviour of single	e phase and	three phase	e AC circuits.						
	C	O4: Understand	the application of	electronics	components	s, diode circu	its as recti	fier				
	ci	circuits and voltage regulators.										
	C	CO5: Evaluate and study the performance of the transistor as a switch.										
		CO6: Create inverting and non-inverting amplifier circuits using Op-Amp.										
Labs			of the network theo	• •								
Conducte	ed. 2.	•	characteristics of fl		•							
	3.	•	ne three phase syst			nnected load	d.					
	4.	•	series and parallel									
	5.	-	understand the use	of different	t electronic	and electrica	l instrume	nts,				
			ronic components.									
	6.		-wave and full-wave		ctifier with	and without	capacitor	filter				
			r diode as a voltage	_		LNOT						
	7.		rformance of a tran				•					
Total Dotal	8.		f Inverting and Nor	i-inverting a	mplifier usir	ng Op-Amp.						
Text Book		EXT BOOK	i laharatan . Funari			l Clastuiaal Cu		b A B.4				
and/or referenc			Laboratory Experim		ctronics and	i Electrical Er	igineering	DY A IVI				
materia		Zungeru , J M Chuma, H U Ezea.2. Experiments Manual for use with Electronic Principles (Engineering Technologies a										
materia	" 2.	•				-	recillolog	ies allu				
		REFERENCE BO	es) by Albert Paul Malvino Dr., David J. Bates, et al.									
			Courses in Electrica	l Engineerin	g (5 th Editio	n) hv S G Ta	arnekar P	K				
	1	•	S. B. Bodhke, S. D.	-								
	2		lectronics 3e, by Pa		-	-	311646101137	•				
			rinciples, by Albert									

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	3	3	3	3	1	1	1	2	2	2	3
XES52	CO2	3	3	2	3	3	3	1	1	2	2	2	3
	CO3	3	3	2	3	3	2	1	1	2	2	2	3
	CO4	3	3	3	3	3	1	1	1	2	2	2	3
	CO5	3	2	1	2	2	1	-	-	2	-	-	-
	CO6	3	2	2	2	3	-	-	-	2	-	-	-
	CO7	3	3	2	2	-	-	-	-	2	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Т	itle of the course	Program Core	Tot	al Number o	of contact ho	urs	Credit			
Code			(PCR) /	Lecture	Tutorial	Practical	Total				
			Electives (PEL)	(L)	(T)	(P)	Hours				
CSS52	D	ATA STRUCTURES									
C3332	Α	ND ALGORITHMS	PCR	0	0	3	3	2			
		LABORATORY									
	Pre-	requisites	Course Assess	ment meth	ods (Continu	uous (CT) and	l end asses	ssment			
					(EA))						
		NIL			CT+EA						
Cours	se	CO1: Understandin	g the suitability ar	nd compatib	ility of array	y and linked l	ist				
Outcon	nes		or different application problems.								
			nding the concept of abstract data types from real-life scenarios and their								
		implementation in									
		CO3: Identify, design		ation of stac	ck, queue, b	inary tree, ar	nd graph as	S			
		applicable for giver	•								
		CO4: Implementati		_	sorting tech	iniques using	appropria	ite data			
		structures and perf	•	•	liantinus						
Tonio		CO5: Create efficie	_	real-life app	ilcations.						
Topic Covere		•	Application of arrays using dynamic memory allocation.								
Cover	eu		on and Application		•	•					
		•	on of stack, and ap								
		•	on of queue, appli	•		tv aueue.					
			on of Binary tree,				der and P	ostorder			
		traversal.	, , , , , , , , , , , , , , , , , , , ,	, , , , , ,		,					
		6. Implementation	on of binary searcl	n tree and o	perations o	n it.					
		7. Implementation	on of linear search	, binary sea	rch (recursi	ve, non-recui	rsive).				
		8. Implementation	on of different sor	ting algorith	ıms.						
		9. Implementation	on of graph algorit	hms: Bread	th first sear	ch, Depth firs	st search.				
		10. Case Studies.									
Text Bo		Text Books:									
and/c			. S. Lipschutz, "Data Structures (Schaum's Outline Series)", McGraw Hill Education; First								
referer		edition (2017)									
mater	ıal		S. Sahni, S. Anderson-Freed, "Fundamentals of Data Structures in C",								
			Press; Second edition (2008). amy, "Programming in ANSI C", McGraw Hill Education India Private								
		_			INICOLAM HI	ii Education I	naia Priva	ıe			
		Reference Books:	nth edition (2017).								
			Drogramming wit	h (" McGra	w Hill Educa	ation 1th Ed	(2019)				
		T. B. S. Gottfried,	1. B. S. Gottfried, "Programming with C", McGraw Hill Education, 4th Ed. (2018).								

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	-	1	1	1	-	-	-	-	-	-	-	-
CCCEO	CO2	-	1	1	3	-	-	-	-	-	-	-	-
CSS52	CO3	2	2	3	2	1	-	-	-	-	-	-	-
	CO4	2	2	2	1	1	-	-	-	-	-	-	-
	CO5	3	3	3	3	3	-	1	1	-	-	1	2

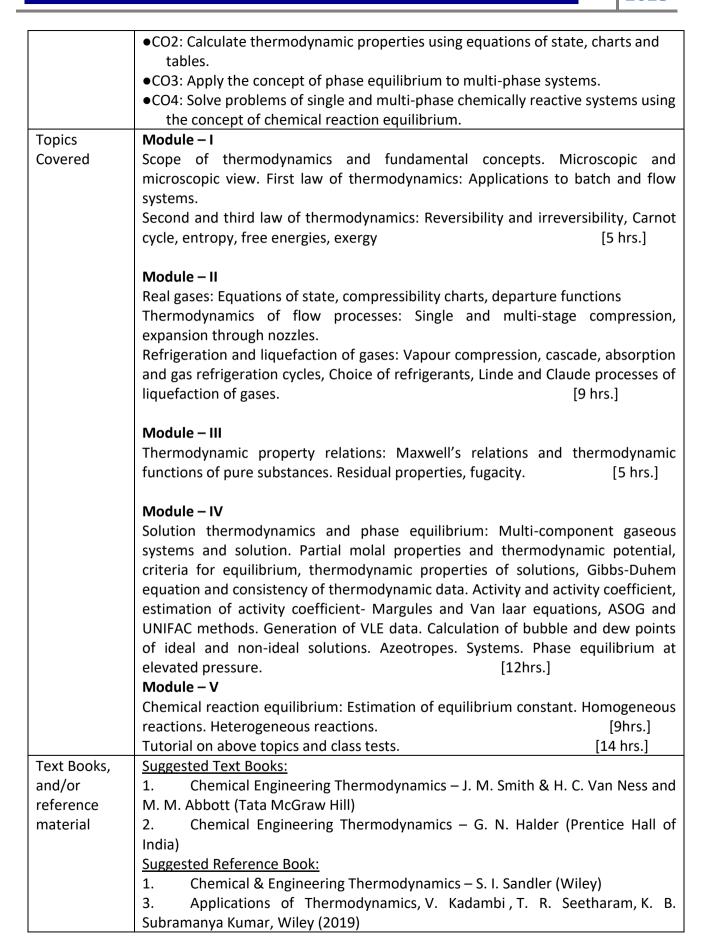
Correlation levels 1, 2 or 3 as defined below:

	Tial	£ 41	Program Core	Tota	al Number o	f contact hou	urs						
Course Code	Title o		(PCR) /	Lecture	Tutorial	Practical	Total	Credit					
	cou	rse	Electives (PEL)	(L)	(T)	(P)	Hours						
	Ext	ra											
XXS51	Acad	emic	PCR	0	0	2	2	1					
	Activ	ities											
Pre-requis	ites	Co	ourse Assessment	methods (0	Continuous	(CT) and end	assessmer	nt (EA))					
NIL					CT+EA								
Course			cial Interaction th	_		ports							
Outcomes	1	CO2: Te	am building and s	self defence									
Topics	YOGA												
Covered		==											
	•												
		Janusirshasana, Gomukhasana, Bhadrasana. 7L											
	•	Mudra-	Gyana Mudra, Ch	nin Mudra.	1L								
			Posture/ Asana				-	•					
		Bhujang	gasana (Cobra Po	ose), Eka P	ada Salabh	asana, Dhan	urasana, (Chakrasana,					
		Viparitk	arani, Ardha Ha	lasana (Hal	f Plough P	ose), Nauka	sana (Boa	at Posture),					
		Shavasa	ina (Relaxing Pose	e) , Makaras	ana.	7L							
	•	Meditat	ion-Om Chant. 1	L									
	•	Standing	g Posture / Asana	ı-Tadasana (Mountain P	ose), Vriksha	na (Tree P	ose), Ardha					
		Chandra	asana, Padahasta	sana, Ardha	Chakrasana	(Half Wheel	Posture).	5L					
	•	Pranaya	ıma-Deep Breathi	ing, Anulom	Vilom, Shit	ali, Bhramari.	. 5L						
	•	Kriya- K	apalbhati 1	lL									
	TAEKW	ONDO											
	•	Introdu	ction About Tae	kwondo- M	leaning Of	Taekwondo,	Korean L	anguage Of					
		Dress, F	ighting Area, Pur	nch, Block, K	icks Etc.	1L							
	•	Stance-	Ready Stance, W	alking Stand	ce, Front Sta	ince, Back Sta	ance. 2L						
	•	Punch ⁻	Technique- Front	Fist Punch	, Double Fis	st Punch, Wit	th Stance	Etc. Blocks-					
		Upper E	Blocks, Middle Blo	ock, Side Blo	ck, Suto Etc	. 4L							
	 Foot Technique- Standing Kick, Front Kick, Doliyo, Back Kick Etc. 6L 												
	•	Poomsae (Forms)- Jang, Yi Jang. 6L											
	•	Self Def	fense Technique-	Self Defens	e from Arms	s, Fist and Pu	nch. 4L						
	•	Sparring	g (Kyorugi)- One S	Step Sparrin	g 2L								
	•	-	nation Technique-		_	nch. 2L							
	•	Project	•										

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
VVCE4	CO1	-	-	-	-	-	2	-	-	2	-	-	1
XXS51	CO2	-	-	-	-	-	-	-	2	3	-	-	1

Correlation levels 1, 2 or 3 as defined below:

THIRD SEMESTER


	[Department of Che	mical Engi	neering								
Course	Title of the course	Program Core	Total Nur	mber of co	ntact hours		Credit					
Code		(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives (PEL)	(L)	(T)	(P)	Hours						
CHC301	PROCESS	PCR	3	1	0	4	4					
	CALCULATIONS											
Pre-requis	sites	Course Assessme	nt method	ls (CT) and	End Sem A	ssessmer	rt (EA)					
Nil	1	CT+EA										
Course	• CO1: Learn fu	undamentals of uni	its and dim	ension, di	mensionless	s groups,	and					
Outcomes	•											
		al interpretation o	f experime	ntal data,	use of log-l	og and se	mi-log					
	· ·	-linear equations										
		tanding of mass an	- .			-						
		tanding the Ideal g	as equation	n, Raoult's	law, Henry	's law, ar	ıd					
T!	psychrometri	ic property										
Topics Covered	Module - I	ension, Dimension	loce group	s and tha	ir cianifican	so Dim	ncional					
Covered		nd analysis: Buckin	• .		•	•						
		igh methods, Step			iilu its appiii	cation, re	peating					
		e Temperature a		٠,	Energy hal:	ance in	thermal					
		tation of AFT, effe	=			arice iii	tiiciiiiai					
	· ·	nding of applicatio	-		•	. Unit or	peration					
		tal data fittings i		_								
	solving techniqu	-	-0 -0		hrs.]	11/						
	Module - II			<u>-</u>	-							
	Ideal gas laws a	and its significance	e, Molar co	oncept, Co	ncept of pa	artial pre	ssure &					
	partial volume,	Dalton's law and	Amagat's	law and N	Iumerical pi	roblems	on their					
	applications											
		concept of vapor	-	_	-							
		oine equation an										
		lems on Duhring8										
		v and their applicat	tions in nu	merical pr	oblems.	[8	8 hrs.]					
	Module - III	a dal balanca di sad				.10						
		terial balance, basi										
	<u> </u>	ms on material			evaporation	, crystai	lization,					
	_	ial balance with ch			moist air a	ad idaal (rac law					
		air and its composition, the property of moist air and ideal gas law, I its significance, various humidity/saturation terms like molar,										
		ve & percentage sa		arriuity/ 3a	taration te	ייווס ווועכ	moiai,					
		oncept of dry-bull		b. adiahat	ic saturatio	n tempe	ratures.					
		Psychometric/hum										
		enthalpy and spe	·=	=	=	fication	and de-					
		operation and ma										
		adiabatic saturation					[13					

	hrs.]
	Module - IV
	Energy conservation laws, Energy balance, Laws of thermodynamics with
	examples, Enthalpy calculation for systems without Chemical Reaction, Estimation
	of Heat Capacities of solids, Estimation of Heat Capacities: liquids and gases. Heat
	of fusion and vaporization.
	Enthalpy calculation for systems with Chemical Reaction, Calculations of heat of
	reaction, heat of combustions, heat of formation and heat of neutralization, Kopps
	rule
	Effect of Temperature and Pressure on Heat of Reaction, Hess's Law, Application
	of Energy balance to problems of various chemical processes [12 hrs.]
	Tutorial on above topics and class tests (14)
Text Books,	Suggested Text Books:
and/or	1. Basic Principles and Calculations in Chemical Engineering – David Himmelblau,
reference	PHI
material	Suggested Reference Books:
	1. Chemical Process Principles – Hougen and Watson, Part-I, CRC Press, CBS.
	· · · · · · · · · · · · · · · · · · ·
	 Chemical Process Principles – Hougen and Watson, Part-I, CRC Press, CBS. Stoichiometry-4thedn, Bhatt and Vora, Tata Mc-Graw Hill

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		3		3						3	
CO2	3		3		3						3	
CO3	3	3			3							
CO4	2	2	2		2			3	3	3	2	

Correlation levels 1, 2 or 3 as defined below:

		De	partment of Che	mical Engi	neering					
Course	Title	e of the course	Program Core	Total Nui	mber of co	ntact hours	;	Credit		
Code			(PCR) /	Lecture	Tutorial	Practical	Total			
			Electives (PEL)	(L)	(T)	(P)	Hours			
CHC302		CHEMICAL	PCR	3	1	0	4	4		
	E	NGINEERING								
	THI	ERMODYNAMIC								
		S								
Pre-requis	sites		Course Assessm	ent metho	ds (Contin	uous (CT) a	nd end			
			assessment (EA))						
Nil			CT+EA							
Course		●CO1: Apply the	e laws of thermodynamics to chemical engineering processes and							
Outcomes	5	conversion d	evices.							

Pos Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	1	1	1	1	1	1	1	1
CO2	3	3	3	3	3	2	2	1	1	1	1	1
CO3	3	3	3	3	3	2	2	1	1	1	1	1
CO4	3	3	3	3	3	2	2	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

		Department of Che					1	
Course	Title of the course	Program Core		1	ntact hours		Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
CHC303	FLUID	PCR	3	1	0	4	4	
	MECHANICS							
Pre-requis	sites	Course Assessme	ent method	ls [Continu	ious (CT) an	d end		
		assessment (EA)						
Nil		CT+EA						
Course	CO1: Creat	e a fundamental ui	nderstandii	ng of fluid	statistics kir	nematics	and	
Outcomes	kinetics							
	 CO2: Apply 	mass, momentum	and energ	y balance	to hydrosta	tic and fl	uid flow	
	problems							
	• CO3: Acqui	re knowledge of Fl	uid machin	eries and	flow-measu	ring devi	ces	
Topics	Module - I							
Covered	Fluids and flu	id properties, co	ntinuum d	concept, F	Fluid statics	cs: Pressure and		
	pressure meas	uring devices, Fluid	d kinematio	cs, differer	nt flow regi	mes, equ	ation of	
	continuity. Bou	ndary layer, Skin a	nd form fri	ction.				
							[6 hrs.]	
	Module - II							
	Bernoulli's equality applications	uation, Hagen-Pois	seuille equ	uation, Fa	nning's equ	uation ar	nd their	
	• •	nd valves. Pressure	a loccor du	o to cuddo	n ovnancion	contra	ction	
	and fittings	iiu vaives. Piessuit	e iosses uu	e to sudde	пехранзіоі	i, contrac	Lion	
	_	equation and total	onoray ha	lanco oqua	tion			
		. Reynold's stress, i		=		[14	5 hrs.]	
	Module - III	Reynola 3 Stress, (alliversal vi	elocity pro	ille	[10	1113.]	
		l curtaca drag flo	wy through	nackad k	and fluidiza	stion nn	oumatic	
	·	I surface, drag, flo	w unougi	i packed l	J e u, HululZa	ation, ph	cumatic	
	conveying	essible fluids, flow	through so	nvorgont (divorgant na	27100		
	•	r fluids: Their chai	_	_	_		ron dus	
			acteristics	and Calcu	iation of pr	essure a	rop aue	
	to their flow th	rougn pipes						

	Flow measuring devices: Orifice meter, venturi meter, rotameter, weirs,
	anemometer, pitot tubes, etc.
	[11hrs.]
	Module - IV
	Fluid machineries: Pumps, blowers and compressors [10hrs.]
	Tutorial on above topics and class tests [14 hrs.]
Text Books,	Suggested Text Books:
and/or	1. Unit Operations – McCabe W L and Smith J L (McGraw Hill)
reference	2. Transport Processes and Unit Operations – Geankoplis J G, Allen A H, Lepek D H
material	(Prentice Hall)
	Suggested Reference Books:
	1. Principle of Unit Operations – Foust A S, Wenzel L A, Curtis W, Maus L,
	Anderson L B (Wiley)

		•				, 0						
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	1	1	1	1	1	1	1	1
CO2	3	3	3	3	3	2	2	1	1	1	1	1
CO3	3	3	3	3	3	2	2	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

		epartment of Che	mical Engi	ineering				
Course	Title of the course	Program Core	Total Nui	mber of co	ntact hours		Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
CHC304	NUMERICAL	PCR	3	0	0	3	3	
	METHODS IN							
	CHEMICAL							
	ENGINEERING							
Pre-requis	ites	Course Assessme	nt method	ls [Continu	ious (CT) an	d end		
		assessment (EA)]						
MAC02		CT + EA						
Course	CO1: Apply n	numerical techniques to solve linear and non-linear algebraic						
Outcomes	equations comr	monly encountered	d in chemic	cal enginee	ering.			
	CO2: Analyze a	and approximate s	solutions t	o differen	tial equation	ons for t	ransient	
	and steady-stat	te problems.						
	CO3: Develop co	omputational algorithms for solving engineering problems using						
	numerical techr	niques such as finite difference methods.						
Topics	Module 1: Intro	oduction to Numerical Methods (14 Hours)						
Covered	Errors in nur	merical computatio	n: Truncat	tion and ro	und-off err	ors.		
	Solution of li	near and nonlinea	r algebraic	equations	s: <mark>Gauss eli</mark> r	mination	Gauss-	

Seidel, and Newton-Raphson methods.

• Applications in chemical engineering: Solving equations for material and energy balances.

Module 2: Numerical Differentiation and Integration (14 Hours)

- Numerical differentiation: Finite differences, forward, backward, and central difference methods.
- Numerical integration: Trapezoidal and Simpson's rules.
- Applications to reactor design and heat exchanger analysis.

Module 3: Solving Differential Equations (14 Hours)

- Initial and boundary value problems: Euler's method, Runge-Kutta method, and finite difference approach.
- Partial differential equations: Heat, mass, and momentum transfer problems.
- Case studies in chemical engineering processes: Reaction engineering and fluid flow.

Text Books, and/or reference material

Textbooks:

- 1. Chapra, S. C., and Canale, R. P., *Numerical Methods for Engineers*, 7th Edition, McGraw Hill, 2015.
- 2. Gupta, S. K., *Numerical Methods for Engineers and Scientists*, 2nd Edition, New Age International, 1995.

Reference Books:

- 1. Jain, M. K., Iyengar, S. R. K., and Jain, R. K., *Numerical Methods for Scientific and Engineering Computation*, 6th Edition, New Age International, 2012.
- 2. Smith, G. D., *Numerical Solution of Partial Differential Equations*, 3rd Edition, Oxford University Press, 2004.
- 3. Hoffmann, J. D., *Numerical Methods for Engineers and Scientists*, 2nd Edition, CRC Press, 2001.
- 4. Schilling, R. J., and Harris, S. L., *Applied Numerical Methods for Engineers Using MATLAB and C*, 1st Edition, Brooks/Cole, 1999.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	1	-	-	-	-	-	-	-
CO2	3	2	2	-	1	-	-	-	-	-	-	-
CO3	3	3	3	-	2	-	-	-	-	-	-	1

Correlation levels 1, 2 or 3 as defined below:

		Department of	of Chemist	ry			
Course	Title of the	Program Core	Total Nu	mber of co	ntact hours		Credi
Code	course	(PCR) / Electives (PEL)	Lectur e (L)	Tutoria I (T)	Practica I (P)	Total Hour s	t
CYC331	Industrial Chemistry	PCR	3	0	0	3	3

Outcomes a a d d f f f s S Topics Covered A tit A s p ca h o h o ca h	pplications CO3: To learn thermodynamics of solutions and understanding of phase iagrams of single and multicomponent systems and their applications. CO4: To learn the principle and application of photochemistry, conductance neasurement and electrochemical cells. CO5: To apply selected C-C bond forming reactions in industrial set-up ollowing green chemistry approach CO6: To understand the basics of carbohydrates, surfactants with their large cale synthesis and application
Course Outcomes a d d f f Topics Covered Al tit Al sp Ca hy ca M Sy ca sy ca m sy ca sy ca m sy ca sy c	CO1: To learn advanced analytical techniques useful for chemical engineering. CO2: To learn the few catalytic processes commonly used in industrial pplications CO3: To learn thermodynamics of solutions and understanding of phase iagrams of single and multicomponent systems and their applications. CO4: To learn the principle and application of photochemistry, conductance neasurement and electrochemical cells. CO5: To apply selected C-C bond forming reactions in industrial set-up ollowing green chemistry approach CO6: To understand the basics of carbohydrates, surfactants with their large cale synthesis and application
Outcomes a a d d f f f f s S Covered A tit A s p o h y ca M S Ca Ca M Ca M	CO2: To learn the few catalytic processes commonly used in industrial pplications CO3: To learn thermodynamics of solutions and understanding of phase iagrams of single and multicomponent systems and their applications. CO4: To learn the principle and application of photochemistry, conductance neasurement and electrochemical cells. CO5: To apply selected C-C bond forming reactions in industrial set-up ollowing green chemistry approach CO6: To understand the basics of carbohydrates, surfactants with their large cale synthesis and application
Topics M Covered A tit AI Sp Ca hy ox hy ca M Sy ec its	· · · · · · · · · · · · · · · · · · ·
Covered Aptition And Street April Ap	lodule 1:
M <u>Sv</u> ec	pplication of coordination compound in analytical chemistry: complexometric tration, biological application. (4 Hrs) nalytical methods used to metal ions estimation: Gravimetric, UV-Vis pectrophotometric, atomic absorption spectrometric, solvent extraction etc. (4 Hrs) natalysis: General principles; Industrial Application of Homogeneous catalysts: ydrogenation of alkenes, hydroformylation, methanol carbonylation, Wacker kidation of alkenes etc. Industrial Application of Heterogeneous catalysts: ydrogenation catalysts, ammonia synthesis, alkene polymerisation (Ziegler-Natta
ec	etalyst). (4 Hrs)
m	vistem of Variable compositions: Thermodynamic condition of chemical quilibrium, Molar and Partial Molar Extensive properties, Chemical potential and a significance, Gibbs-Duhem equation, Entropy and Gibb's free energy change of ixing, Concept of Fugacity, Chemical potential of ideal and real gases, Activity. (3 Hrs)
Ca O Pr Do ca In di	nase-Equilibrium & Colligative Properties: Gibb's Phase rule and its derivation, alusius-Clapeyron Equation, Phase diagram of CO ₂ , H ₂ O and Sulphur system, rider of Phase transition. Colligative properties: Raoult's law and Henrys law, rinciple and industrial application of Osmosis and Reverse Osmosis, etermination of number average molar mass of macro-molecules, Two emponent systems: ideal binary solution, liquid-vapour equilibrium, Lever Rule, dustrial process of isobaric fractional distillation, steam distillation, Vacuum stillation in petroleum refining. Duhem-Margules equation, Non-ideal binary plution, Azotropes and industrial methods of Azeotropic distillation: Entrainer and Pressure swing distillation.
pl	(4 Hrs) notochemistry: Principle and Industrial application of Photo-chemical and Photo-nysical processes: Jablonsky diagram with Industrial application of Fluorescence and Phosphorescence. (2 Hrs)

<u>Electrochemistry:</u> Equivalent and molar conductances, strong and weak

electrolytes, transport number, conductometric titration and its application in Industry, Agriculture, Water Treatment and Research; Electrochemical cell with transference: liquid junction potential and applications.

(3 Hrs)

Module 3:

Principles of large scale organic synthesis having industrial relevance. Industrial applications of Grignard reagents, Barbier reaction, ethyl acetoacetate and malonic esters in C-C bond formation. Application of green chemistry in industry.

(4 Hrs)

Introduction to carbohydrate chemistry, classification, structure elucidation. Reactions of glucose and fructose; mutarotation, inversion of cane sugar. Synthetic sweetners, applications of carbohydrates in industry. (4 Hrs)

Surfactants: soaps and detergents, critical micelle concentration, synthetic detergents, Friccohesity of surfactants, hydrophilic-lipophilic balance (HLB) values.

(4 Hrs)

Text Books, and/or reference material

- 1. Inorganic Chemistry Part-I & II, R. L. Dutta
- 2. Fundamentals of Analytical Chemistry By Skoog, West, Holler and Crouch
- 3. Physical Chemistry by P. C. Rakshit.
- 4. Physical Chemistry by P. Atkins, Oxford.
- 5. Organic Chemistry: R.T. Morrison & R.N Boyd, Prentice Hall of India Pvt. Ltd.
- 6. Engineering Chemistry, 2nd Edition, Wiley.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	РО	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs	1											
CO1	3	3	3	3	3	3	2	2	1	2	1	2
CO2	3	3	3	3	3	2	2	2	1	2	2	2
CO3	3	3	3	3	2	2	2	3	1	1	1	2
CO4	3	3	3	3	3	3	2	3	1	1	2	2
CO5	3	3	3	3	3	3	2	2	1	2	1	2
CO6	3	3	3	3	3	3	2	2	1	2	2	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

Department of Chemistry													
			Tota	l number o	f contact ho	urs							
Course code	Title of the course	Program Core (PCR)/Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total hours	Credit						
CYS381	Instrumental Analysis Laboratory	PCR (Practical)	0	0	3	3	2						
Pre-	requisites	Course assessment methods											
(CYS51	Continuous assessment (CA) + Viva-voce at the end of the semester											
Course	CO1: To learn a	dvanced instrumental chemical analysis for chemical engineering.											
outcomes	CO2: To estir techniques.	CO3: To synthesize and characterize few compounds of industrial importance 1. Synthesis of Mohr's salt.											
Topics	1. Synthesis of	1. Synthesis of Mohr's salt.											
covered	 4. Spectroscopi 5. Estimation of 6. Estimation of vitamin C. 7. Determination measurement. 8. Determination 9. Kinetics of estimation 10. Analysis of 	Fe ²⁺ in Mohr's salt to Estimation of metal Na ⁺ , K ⁺ , Ca ²⁺ by Flash for base content of control of CMC of a such of solubility productor hydrolysis.	al ion (Cu ²⁺ / ame photom ommerciall urfactant: c	Cr ³⁺). netry. y available conductome	antacid an								
Text Books, and/or reference	1.Vogel's Quant	10. Analysis of pyrolusite ore. Suggested Text Books: 1. Vogel's Quantitative Chemical Analysis (6th Edition) Prentice Hall 2. Practical Chemistry by R.C. Bhattacharya											
materials	 Advanced Ph Comprehens 	erence Books: eriments in Physical hysical Chemistry Ex live Practical Organ lia and S. Dhingra	periments:	by Gurtu &	Gurtú	ualitative	Analysis						

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	3	3	2	3	2	3	3	2	3
CO2	3	3	3	3	3	2	2	2	3	3	3	3
CO3	3	2	3	3	3	2	2	2	3	3	2	3

Correlation levels 1, 2 or 3 as defined below:

	Department of Chemical Engineering												
Course	Title of the course	Program	Total Nur	mber of co	ntact hours		Credit						
Code		Core (PCR)	Lecture	Tutorial	Practical	Total							
		/ Electives	(L)	(T)	(P)	Hours							
		(PEL)											
CHS351	FUEL LABORATORY	PCR	0	0	3	3	2						
Pre-requisi	ites				l		1						
Nil		Viva-Voce											
Course	• CO1: Demonstrate	and underst	and the	principles	of fuel p	roperties	testing						
Outcome	instruments.												
S	• CO2: Conduct the ex	periments to	determine	the proper	ties of diffe	rent fuels							
	● CO3: Analyze the pe	rformance of e	equipment	through gr	oup tasks.								
Topics	List of Experiments	•											
Covered		Proximate Analysis of Coal determines the moisture ash, volatile matter and fixed											
	carbon of coal in term	carbon of coal in terms of weight percentage.											
	2. Shattering Index	of Coke											
	3. Caking Index												
	4. Swelling Index												
	5. Viscosity of Fuel (
	6. Determination of	Flash point ar	nd Fire poir	nt of an oil	by closed c	up Pensky	y Martin						
	Apparatus												
	7. Determination of			oil by Dea	n and Stark	Apparatu	IS						
	8. Aniline point dete	•					_						
	9. Determination of	= =	=	=	_								
	10. To perform atmo	=				rina out	percent						
	recovery, percent tota			-									
	11. Determination of			•			[26 brs]						
Tout	12. Determination of		e or ruer by	y Conrauso	n wethou		[36 hrs.]						
Text	Suggested Text Books: 1. Modern Petroleum Refining: B. K. B. Rao												
Books, and/or	2. Fuels & Combusti	_											
reference	Suggested Reference		(a)										
material	•		·· \// I Nel	son									
illatellal	1. Petroleum Refining Engineering: W. L. Nelson												
	2. Petroleum Refining Technology & Economics: J.H. Gary & G.E. Handwerk												

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	1	1	-	1	1	-	-	-	-	-	-	1
CO2	2	2	-	2	2	-	-	-	-	-	-	2
CO3	2	2	-	2	2	-	-	-	-	-	-	2

Correlation levels 1, 2 or 3 as defined below:

FOURTH SEMESTER

		Dor	FOURTH Spartment of Ch									
Course	Ti+la	e of the course	Program			ntact hours		Credit				
Code	TILLE	e of the course	Core (PCR) /		1	1	Total	Credit				
couc			Electives	Lecture (L)	Tutorial (T)	Practical (P)#	Total Hours					
			(PEL)	(-)	(1)	(' /	110013					
CHC401	HEA	T TRANSFER	PCR	3	1	0	4	4				
Pre-requis	ites		Course Assess		nods (Conti	nuous (CT)	and end					
0110004		_	assessment (E	(A))								
CHC301, C	HC30	I	CT+EA									
Course			te principles and laws of heat transfer of different heat									
Outcomes		exchanging phen		blome of d	ifforont dif	ficulty lovel	•					
			· · · · · · · · · · · · · · · · · · ·	eat transfer problems of different difficulty levels and analyze heat transfer equipment								
Topics		Module - I	and analyze nee	at transiti	equipment							
Covered		Mechanism of	heat transmis	sion: Con	duction,	Convection	and Ra	diation.				
		Conduction: Fou										
		composite slabs	, cylinders and	d spheres;	Thermal	contact re	sistance,	Critical				
		thickness of insu	ulation, Optimu	ım thickne	ess of insu	lation; Uns	teady-sta	ite heat				
		transfer - use o		chart, one	e and two	-dimension						
		different geomet	ry.				[:	10 hrs.]				
		Module - II			- C CC -			.				
		Convection: Force Coefficients; Log										
		transfer; Equivale	•				•					
		boundary layer; A		•				10 hrs.]				
		Module - III	marogy between				L.	20 1 31,				
		Natural convect	ion: Empirical	equations	s; Conden	sation: Filr	n Conde	nsation,				
		Derivation of he	at transfer co	efficient, E	impirical e	quations; E	oiling of	liquids:				
		Concept of exc	ess temperati	ure, Pool	boiling,	Forced cor	nvection	boiling;				
		Radiation: Black I	•	body; Laws	of radiation	on; View fac						
		exchange betwee	en surfaces					[12hrs.]				
		Module - IV	T (-1:((-				de de c	D - 1-1-				
		Heat exchangers pipe, Shell and tu	• •		_		_					
		reboilers.	ibe, Finned tub	e and con	ірасі пеаі	exchangers	; condens	sers and				
		Evaporation: Typ	e of evanorator	rs with acco	essories: Ca	anacity and	Steam ed	conomy.				
		Boiling point rise										
		multiple effect ev			- 1	,		10 hrs.]				
		Tutorial on above	•	ss Tests			[14 hrs.]	=				
Text Books	s,	Suggested Text B	ooks:									
and/or		1. Process Heat T										
reference		2. Heat Transfer I	•	pplication,	B. K. Dutta	a, PHI.						
material												
	1. Heat Transfer: An Engineering Approach: Cengel and Boles, Tata Mc-Graw Hill											

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	1	1	1	1	1	1	1	1
CO2	3	3	3	3	3	2	2	1	1	1	1	1
CO3	3	3	3	3	3	2	2	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

	Depa	artment of Che	mical Engi	neering						
Course	Title of the course	Program	Total Nu	mber of co	ntact hours	5	Credit			
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P) [#]	Hours				
CHC402	MECHANICAL OPERATIONS	PCR	3	1	0	4	4			
Pre-requisi	ites	Course Assess and end asses		•	inuous (CT)	, mid-ter	m (MT)			
Fluid Mech	nanics	CT+MT+EA								
Course Outcome s	 CO1: Identify principles of separation of liquid-solid, gas-solid, and solid-solid CO2: Design and analyze mechanical operation equipment CO3: Compare performances and select type of size separation, solid-liquid separation and size reduction equipment CO4: Learn industrial applications of size separation, solid-liquid separation, size reduction equipment 									
Topics Covered	Module - I Particle size and shape Sieve analysis, Industria Size reduction and clas Equipment — selection Intermediate & Grindin applicability Size enlargement: Gran Module - II Agitation and mixing: Size Types of equipment an Module - III Fluid — particles sepan equal settling velocity chambers, thickening,	al screens, Effectsification of so on, Operating ong equipment, ulation and other solid-solid mixtod power require and sediment.	tiveness or lid particle principle Laws of contents are size enlowers, solid-lement, Mix al settling ation; Class	f screens s: Principle s of Coo rushing an argement liquid past king Index. velocity, f ssifications	es of crushing operations. e and solut [8 hrs.] free and h	ing and g ing equ – limitat [18 hr ion prep indered	rinding, ipment, ion and s.] aration, settling, Settling			

	Module - IV	
	Filtration: Introduction; Types of filtration; Filtration equations; batch and continuous	s
	filtration equipment - Bed, Plate and Frame, Leaf and Rotary Drum Vacuum Filters	;;
	Filter Aid and Filter Medium; Washing	
	Conveying of solids: Bins, silo and hoppers, Conveyors and elevators, Hydraulic and	d
	pneumatic transport [10 hrs.]	
	Tutorial on above topics and class tests [14hrs.]	
Text	Suggested Text Books:	
Books,	1. G. G. Brown, Unit Operations, CBS Publishers & Distributors, 2005	
and/or	2. W. McCabe. J. Smith, ,P. Harriott, Unit Operations of Chemical Engineering McGrav	v
reference	Hill Education, 2017	
material	Suggested Reference Books:	
	1. W.L. Badger and J. T. Banchero, Introduction to Chemical Engineering, McGraw-Hil	II
	book company, 1955	
	2. C.J. Geankoplis, Transport Processes and Separation Process Principles (Include	S
	Unit Operations), Prentice Hall India Learning Private Limited, 2004	
	3. Richardson, Coulson and Richardson's Chemical Engineering, Volume 2, 5th Edition	1:
	Particle Technology And Separation Processes, Elsevier, 2006	

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		3		3						3	
CO2	3		3		3						3	
CO3	3	3			3							
CO4	2	2	2		2			3	3	3	2	

Correlation levels 1, 2 or 3 as defined below:

	Department of Chemical Engineering											
Course	Title of the	Program Core	Total Nu	mber of co	ntact hours		Credit					
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives (PEL) (L) (T) (P) Hours										
CHC 403	MASS	PCR	3	1	0	4	4					
	TRANSFER- I											
Pre-requisite	es	Course Assessment methods (Continuous (CT), mid-term (MT)										
		and end assessm	ent (EA))									
Nil		CT+MT+EA										
Course	CO1 Principles of mass transfer for chemical processes											
Outcomes	omes OCO2: Various laws of mass transfer and mass balance of chemical processes											
	 CO3: Design and analyze mass transfer equipment through problem solution 											

Topics Covered

Module - I

Mass transfer operation and principles. General principles of diffusion process, Molecular and eddy diffusion in fluids, Diffusion in solids and measurement of diffusivity, Multi-component diffusion, Diffusion through a variable area, Knudsen diffusion, surface diffusion and self-diffusion [10 hrs.]

Module - II

Convective mass transfer and mass transfer coefficients: Introduction. Dimensionless groups in mass transfer and correlations for the convective mass transfer coefficient. Theories of mass transfer, Analogy between Momentum, Heat and Mass Transfer, Inter-phase mass transfer and Basic laws, Two-film theory, overall mass transfer coefficient, Material balance in contacting equipment – the operating line and Mass transfer in stage-wise contact of two phases. [10 hrs.]

Module III

Gas absorption and stripping: Introduction. Design of a packed tower: Design method based on individual mass transfer coefficients. Design method based on the overall mass transfer coefficient. Determination of the number of stages in a tray tower, HETP, Tray efficiency, Gas-liquid contacting equipment, tray or plate column, operational features of tray column: Hydraulic gradient and multi-pass trays, weeping and dumping, entrainment, flooding, turndown ratio and estimation of diameter of tray. [12 hrs]

Module IV

Elementary idea about multi-component absorption and adsorption with chemical reactions. Extraction: Liquid-liquid extraction, Equilibrium data, Use of triangular diagrams, selectivity and choice of solvent, Single and multi-stage calculation in liquid-liquid extraction. Extraction efficiency, Principles of leaching and stage calculation methods. [10 hrs.]

Tutorial on above topics and class Tests [14 hrs]

Text Books, and/or reference material

Suggested Text Books:

- 1. Mass Transfer Operations: R.E. Treybal
- 2. Principles of Mass Transfer & Separation Processes: B. K. Dutta

Suggested Reference Books:

- 1. P. Sinha and P. De, Mass Transfer Principles and Operations, PHI
- 2. Chemical Engineering: 5th Ed., Coulson & Richardson

Mapping of CO (Course Outcome) and PO (Programme Outcome)

	а	b	С	d	е	f	g	h	-	j	k	_
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	1	1		3			2				
CO2	3		3		3					1	3	1
CO3	3		3		3		1		1		3	

Correlation levels 1, 2 or 3 as defined below:

	D	epartment of Che	mical Engi	neering							
Course	Title of the course	Program Core	Total Nu	mber of co	ntact hours		Credit				
Code		(PCR) /	Lecture	Tutorial	Practical	Total	1				
		Electives (PEL)	(L)	(T)	(P)	Hours					
CHC404	CHEMICAL	PCR	3	1	0	4	4				
	REACTION										
	ENGINEERING										
Pre-requis	ites	Course Assessme	ent metho	ds (Continu	uous (CT), m	nid-term	(MT)				
•		and end assessm		`	` "		` ,				
Nil		CE+MT+EA									
Course	• CO1: Understand	the fundamentals	of chemica	al kinetics							
Outcome	• CO2: Design and a	nalyzeideal and n	on-ideal ch	emical rea	actors and b	ioreacto	rs				
S	● CO3: Design and	-									
	fluid reactors	,		•	•						
Topics	Module - I										
Covered	Review of elements	of reaction kineti	cs: The rat	e expressi	on, mechan	ism of re	actions,				
	Arrhenius' equation	١.									
	Interpretation of ra	ite data: Constant	t volume a	nd variabl	le volume b	atch rea	ctors [6				
	hrs.]										
	Module - II										
	Single homogeneou	us reaction: Desig	n of isoth	ermal and	adiabatic	batch, pl	ug flow				
	and back mix reacto	ors									
	Multiple reactions:	Independent, para	allel and se	ries reacti	ons, autoca	talytic re	actions.				
	Choice of reactors	for single and mul	tiple react	ions and n	nultiple rea	ctor syst	ems [12				
	hrs.]										
	Module - III										
	Biochemical reaction	•	alyzed and	l biomass	growth re	eaction	kinetics,				
	design of bioreactor										
	Non-ideal flow in re				fluid in ves						
	and non-ideal react	ors, modeling of n	on-ideal re	eactors			[8 hrs.]				
	Module - IV										
	Solid-fluid catalyzed	•		•	•	•					
	surface kinetics, po				•						
	physical and chen	•				•	-				
	distribution in mult	iple reactions, eff	ect of por	e distribut	ion, experir	nental m	ethods.				
	Catalytic reactors										
	Fluid-fluid reaction	ns: Overall rate	e equatio	ns, applic	cation to	reactor	design				
	[9hrs.]										
	Module - IV										
	Solid-fluid noncata	•	_		el, determi						
	controlling steps an		_				[7hrs.]				
<u> </u>	Tutorial on above to	•	ts [14 hrs.]								
Text	Suggested Text Books		otion Francis	oorina Das	احدالما المانية	io					
Books, and/or	1. H. S. Fogler, Eleme 2. O. Levenspiel, Cher		_	_	itice Hall Ind	ld					
reference	Suggested Reference	•	ieeillig, WII	cy.							
i di di di lice	Suggested Reference				cation; 3rd e						

		•			, , ,					•		
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	1	1	1	1	1	1	1	1
CO2	3	3	3	3	3	2	2	1	1	1	1	1
CO3	3	3	3	3	3	2	2	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

	Dep	artment of Ch	emical En	gineering						
Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit			
Code		Core (PCR)	Lecture	Tutorial	Practical	Total				
		/ Electives (PEL)	(L)	(T)	(P)	Hours				
CHS451	REACTION	PCR	0	0	3	3	2			
	ENGINEERING									
	LABORATORY									
Pre-requisi	tes									
Basic Chem	nistry	Viva-Voce								
Course	CO1: Understand	the fundame	ental princ	ciples of re	eaction kine	etics in o	different			
Outcome	reactor through prac	tical experime	ntation							
S	• CO2: Study the n	on-catalytic h	omogeneo	us saponif	ication reac	tion in C	STR and			
	residence time distrib	oution in a CST	R.							
	• CO3: Study the n	on-catalytic h	omogeneo	us saponif	ication reac	tion in p	lug flow			
	reactor.									
	• CO4: Study the n	on-catalytic ho	omogeneo	us saponifi	cation react	ion in isc	thermal			
	batch reactor.									
Topics	List of Experiments									
Covered	1. Study of Non-cata									
	2. Study of non-cat		•							
	reactor and to integration.	erpret the kine	etic data of	the given	reaction in t	the form	of a rate			
	3. Residence distribu	ition (RTD) Stu	dies in CST	-D						
	4. Study of non-cat				n reaction	in a cor	ntinuous			
	stirred tank react			-						
	form of a rate equ		piec the N	ciic data	or the bive	reactio				
	5. Removal of dye us		idation pro	cess and e	valuation of	f its Kinet	ic data.			
	6. Study the perform									
	saponification of e			-						
	7. Study RTD of a packed bed reactor. [36 hrs.]									

Text	Suggested Text Books:
Books,	1.Laboratory Manual
and/or	2. Chemical Reaction Engineering, Octave Levenspiel, Wiley; Third edition (2006)
reference	3. Elements of Chemical Reaction Engineering 4th Ed - H. Scott Fogler
material	Suggested Reference Books:
	1. The engineering of chemical reactions, Lanny D. Schmidt, Oxford University Press
	Inc; 2nd edition (2004)

		•										
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	1	2	2	3	2	2	2	1	2	2	1
CO2	3	2	3	2	3	1	1	2	1	2	2	2
CO3	3	1	3	2	2	2	1	2	2	1	3	2
CO4	3	2	3	1	2	1	1	3	2	2	3	2

Correlation levels 1, 2 or 3 as defined below:

Department of Chemical Engineering											
Course	Title of the course	Program Core	_		ntact hours	;	Credit				
Code		(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives (PEL)	(L)	(T)	(P) [#]	Hours					
CHS452	FLUID	PCR	0	0	3	3	2				
	MECHANICS										
	LABORATORY										
Pre-requisi	tes	Course Assessme	ent metho	ds (Contini	lous (CT), a	nd end					
		assessment (EA))								
CHC 303 [F	luid Mechanics]	CE+EA									
Course	CO1To prove e	xperimentally law	/s/equation	ns like Ber	noulli's equ	uation, Fa	anning's				
Outcome	equation, etc.										
s	CO2. To determine discharge coefficients of flow meters like orifice and venture										
	meter, and velocity profiles using pitot tube										
	CO3. To determ	ine K factor of pip	e fittings a	nd valves							
	CO4. To draw cl	naracteristic curve	s of pump	S							
	CO5. To create	an experimenta	l understa	nding of I	aminar and	d turbule	nt flow				
	regimes										
Topics	List of Experiments										
Covered	1. To study different	types of flow using	Reynold's a	pparatus.							
	2. To verify Bernoulli		•								
	3. To determine poin										
	4. To determine flow			r and Orific	e meter.						
	5. To study the flow characteristic in packed bed.										
	6. To study the flow of										
	7. To study the reciprocating pump characteristics.8. To determine the losses due to friction in pipes and fittings.										
	9. Flow measuremen			nu nittings.	[36	hrs]					
	3. How measuremen	t by using v-nottine	ა		[30	1115]					

CURRICULUM AND SYLLABUS FOR DUAL DEGREE IN CHEMICAL ENGINEERING

Text	Suggested Text Books
Books,	1. Transport Processes and Unit Operations - C. J. Geankoplis
and/or	2. Principle of Unit Operations – Foust A S, Wenzel L A, Curtis W, Maus L, Anderson L
reference	B (Wiley)
material	Suggested Reference Books:
	1. W. McCabe. J. Smith, ,P. Harriott <i>Unit Operations of Chemical Engineering</i> , McGraw
	Hill Education, 2017

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO8	PO9	PO10	PO11	PO12
COs											
CO1	1	1		1	1						1
CO2	2	2		2	2						2
CO3	2	2		2	2						2
CO4	2	2		2	2						2
CO5	3	3		3	3						3

Correlation levels 1, 2 or 3 as defined below:

Fourth (4th) Semester Department Electives

	D	epartment of Che	mical Engi	neering							
Course	Title of the course	Program Core	Total Nu	mber of co	ntact hours		Credit				
Code		(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives (PEL)	(L)	(T)	(P) [#]	Hours					
CHE410	FUELS AND	PCR	3	0	0	3	3				
СПЕ410	COMBUSTION										
Pre-requisi	tes	Course Assessme	ent method	ds (Contini	uous (CT), m	nid-term	(MT)				
		and end assessm	nent (EA))								
Nil		CE+MT+EA									
Course	CO1: Understand th	ne properties, type	es, and cha	racterizati	on of fuels.						
Outcome	CO2: Analyze com	bustion processes	for solid	, liquid, a	nd gaseous	fuels ar	nd their				
S	efficiencies.										
	CO3: Apply air-fuel ratios, thermodynamics, and reaction kinetics concepts i										
	designing combusti	on systems.									
Topics	Module 1: Fuels an	d Their Properties	(14 hrs)								
Covered	 Classification of 	fuels: Solid, liquid	l, and gase	ous fuels.							
	 Characterization 	n of fuels: Calorific	value, pro	ximate an	d ultimate a	analysis,	and fuel				
	standards.										
	Liquid fuels: Cru	ide oil processing,	gasoline, o	diesel, and	kerosene.						
	Gaseous fuels: Natural gas, biogas, and producer gas.										
	Module 2: Principles of Combustion (14 hrs)										
	Combustion stoichiometry: Air-fuel ratio, excess air, and flue gas composition.										
	 Thermodynamic 	cs of combustion:	Enthalpy, h	neat of cor	nbustion, a	nd flame					
	temperature.										
	Combustion kin	etics: Reaction me	echanisms,	ignition, a	nd flame st	ability.					
	Module 3: Combust	tion Systems and	Applicatio	ns (14 hrs)							
	Solid fuel combi	ustion: Fixed bed a	and fluidize	ed bed con	nbustion.						
	Liquid fuel comb	oustion: Burners a	nd spray c	ombustior	۱.						
	 Gaseous fuel co 	mbustion: Gas tur	bines and	internal co	mbustion e	ngines.					
	 Environmental i 	mpact of combust	tion and po	ollutant co	ntrol.						
Text	Textbooks:										
Books,	1. Turns, S.R. An Ir	ntroduction to Con	nbustion: C	oncepts a	nd Applicati	ons. McG	Graw				
and/or	Hill, 3rd Edition, 203	11.									
reference	2. Smith, I.W. Com	bustion and Energ	gy Utilizatio	on. Springe	er, 2nd Editi	on, 2020					
material	Reference Books:										
	1. Sarkar, S. Fuels	and Combustion. l	Jniversitie:	s Press, 2n	d Edition, 2	009.					
	2. Glassman, I., Yetter, R.A., & Glumac, N.G. <i>Combustion</i> . Academic Press, 5th										
	Edition, 2014.										
	3. Kuo, K.K. <i>Principles of Combustion</i> . Wiley, 2nd Edition, 2005.										
	Mukhopadhyay, A.K. Combustion Engineering and Fuel Technology. McGraw Hill,										
	2016.										

1,1, 0 (,,,, -, -, -, -, -, -,												
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	2	1	-	-	-	-	-	-	ı	-	1
CO2	3	3	2	1	-	1	-	-	-	-	-	2
CO3	3	3	3	2	2	2	1	-	-	-	-	3

Correlation levels 1, 2 or 3 as defined below:

Department of Chemical Engineering											
Course	Title of the	Program	Total Num	ber of conta	act hours		Credit				
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total					
		/ Electives	(L)	(T)	(P)	Hours					
		(PEL)									
CHE411	NON-	PEL	3	0	0	3	3				
	CONVENTIONAL										
	ENERGY										
	ENGINEERING										
Pre-requis	ites	Course Asse	se Assessment methods (Continuous (CT), mid-term (MT)								
		and end ass	d end assessment (EA))								
Nil		CE+MT+EA									
Course	CO1: Learn abo	ut energy tec	hnology of	different co	nventional a	and non-					
Outcome	conventional energ	y resource ar	nd Recent w	orldwide er	nergy marke	t scenario					
S	• CO2: Design &	analyze of d	lifferent ren	ewable en	ergy collecto	ors and re	newable				
	energy thermal pov	wer plants									
	CO3: Learn industrial and domestic applications of different renewable energy										
	sources										
	• CO4: Solve en	ergy technol	ogy proble	ms of diffe	rent difficu	Ity levels	through				
	tutorials										
Topics	Module I:										
Covered	Wind Energy: Sour										
	and Drag- Basis of										
	angle of attack, ar	•									
	rotors. Determinat										
	performance chara		etz criteria,	_	id analysis	of wind	turbines.				
	geographical aspec	ts.		[10 hrs.]							
	Module II:										
	Solar Energy: Energ	· -									
	into heat, Flat plate and Concentrating collectors, Construction and performance										
	analysis of solar										
	collectors and colle		=	=							
	heat removal factor			•	•						
	convection, Salt gr		-		-	=					
	Solar drying and dehumidification: Solar cabinet dryers, convective dryers Solar										

engines-Stirling, Brayton engines, Photovoltaic, p-n junction, solar cells, PV systems, Stand-alone, Grid connected solar power satellite. [10 hrs.]

Module III:

Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio. Radioactive waste disposal

Energy from Ocean: Wave, Tidal and OTEC energy- Difference between tidal and wave power generation, Principles of tidal and wave power generation, OTEC power plants (closed cycle, open cycle, hybrid cycle), operation and technical problems, environmental impact, Tidal power, salinity power plants,

Geothermal systems: Resources, types of wells, methods of harnessing the energy, Hot water and dry steam systems, energy extraction principles.

[10 hrs.]

Module IV:

Energy from biomass: Biomass utilization: pyrolysis, gasification, anaerobic digestion (biogas production). Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of bio-gas, Biodiesels: Manufacture and characteristics.

Gasohol: Characteristics and manufacture, use of pervaporation technology.

Synthetic liquid fuels from coal: F – T Process, Coal hydrogenation, MTOG process. [10 hrs.]

Text Books, and/or referenc

material

Suggested Text Books:

- 1. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi, 2003
- 2.K M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, New Delhi, 2003.

Suggested Reference Books:

- 1. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing House, New Delhi, 2004
- 2. Wakil MM, Power Plant Technology, McGraw Hill Book Co, New Delhi, 2004.
- 3. G. D. Rai Non Conventional Energy Sources. Khanna Publication
- S P Sukhatme and J K Nayak, Solar Energy, McGraw Hill Book Co, New Delhi 4th Edition, 2017

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	1	1	1	1	1	1	1	1
CO2	3	3	3	3	3	2	2	1	1	1	1	1
CO3	3	3	3	3	3	2	2	1	1	1	1	1
CO4	3	3	3	3	3	2	2	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

	D	epartment of Che	mical Engi	neering									
Course	Title of the	Program Core			ntact hours		Credit						
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total							
		Electives (PEL)	(L)	(T)	(P)	Hours							
CHE412	COLLOIDS AND	PEL	3	0	0	3	3						
	INTERFACE												
	ENGINEERING												
Pre-requisit	es	Course Assessme	ent metho	ds (Contini	uous (CT), m	nid-term	(MT)						
		and end assessm	nent (EA))										
NIL		CT+MT+EA											
Course	CO1: Acquire ar	idea about the a	oplication o	of colloida	l chemistry,	fluid-flui	d and						
Outcomes	solid-fluid interface	e engineering in di	ifferent inc	lustrial fiel	ds.								
	CO2: To learn the fundamental knowledge of intermolecular forces involved in												
	colloids and interfaces												
	CO3: Introduction		_			lication o	of						
	surface active ager	nts to enhance the	efficiency	in the pro	cess.								
Topics	Module I:	Importance and scope of the subject. Overview of colloidal systems, interfaces and											
Covered	•	cope of the subjec	ct. Overvie	w of collo	idal system:	s, interfa	ces and						
	surface.												
	Properties and application of the colloids. Colloidal stability factor. Kinetic theory of colloidal systems: sedimentation, centrifugation, diffusion, Domestic and industrial												
			entrifugatio	on, airrusi	on, Domest	ic and in	idustriai						
	application of collo		calid intar	face The	rmadynami	cc of int	orfocos						
	Adsorption at flui Interfacial rheology			iace, illei	illouyllallii		[10hrs.]						
	Module II:	y and transport pr	ocess.			l	101113.]						
	Surface active age	nt: Surfactant Sur	face and ir	nterfacial t	ension surf	face free	energy						
	Surface tension for						chergy.						
	Theory of surface				•		micelle						
	and mixed micell		_	_	=								
	interfaces, Mixed r		-	_									
	Preparation, mech	anistic details of	stabilizatio	on and rela	ationship be	etween F	HLB and						
	solubility paramete	er, characterizatio	n and Appl	ication.			[10hrs.]						
	Module III:												
	Intermolecular for	ces relevant to co	lloidal sys	tems: Elec	trostatic an	d van de	r Waals						
	forces. DLVO theor	ry.Measurement t	echniques	of surface	tension, co	ntact ang	gle, zeta						
	potential, particle	size.					[4 hrs.]						
	Module IV:												
	Overview of indust			•									
	[Mattress industr												
	industry, Mineral		-			-							
	formulations], Sup		surface and	a selt-clea	ning surfac	es. Case	studies						
	related interfacial		a concert	through 1	ho curfoss	mad:t:	tion for						
	Application of inte	_	•	_									
	the synthesis of na	nostructurea mat	eriai by usi	ing surrace	active ager	IL.	[12hrs.]						

Text
Books,
and/or
reference
material

Suggested Text Books:

- 1. P. C. Hiemenz, and R. Rajagopalan, Principle of colloid and surface chemistry, 3rd edition, MercelDekher, N. Y. 1997.
- 2. Pallab Ghosh, Colloid and Interface Science, 1st Edition, PHI Learning, 2009.
- 3. M. J. Rosen, Surfactants and Interfacial Phenomena, Wiley-Interscience Publication, New York, 2004.

Suggested Reference Books:

- 1. Drew Myers, Surfaces, Interfaces and Colloids, 3rd Edition, Wiley, 2006.
- 2. Tharwat F. Tadros, Applied Surfactants Principles and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005.
- 3. J. Israelachvili, Intermolecular and Surface Forces, Academic Press, New York, 1992.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

						<u> </u>						
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3							2				1
CO2			2		2							1
CO3		2	2					2				

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

Department of Chemical Engineering											
Course	Title of the course	Program	Tota	l Number	of contact h	ours	Credit				
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total					
		Electives	(L)	(T)	(P)	Hours					
		(PEL)									
CHE413	INDUSTRIAL	PEL	3	0	0	3	3				
	POLLUTION										
	CONTROL AND										
	TREATMENT										
Pre-requisi	ites	Course Asses	sment met	thods (Con	tinuous (CT), mid-terr	n (MT)				
		and end asse	ssment (EA	A))							
Knowledge	e of all Unit	CT+MT+EA									
Operations	s and Unit processes										
Course	• CO1: The fundam	ental concepts	in enviror	nmental er	ngineering o	dealing wit	h water,				
Outcome	air, and land pollu	ıtion.									
S	• CO2: Graduates	will learn a	solid foun	idation in	mathemat	ics, scienc	ces, and				
	technical skills ne	eded to analyz	e and desi	gn environ	mental eng	ineering sy	/stems.				
	CO3: Graduates will be familiar with current and emerging environmental										
	engineering and global issues, and have an understanding of ethical and societal										
	responsibilities.										
	 CO4: The necessary qualifications for employment in environmental engineering 										

	and related professions, for entry into advanced studies, and for assuming eventual leadership roles in their profession.
Topics	Module I:
Covered	Introduction to Water Treatment: National & International Scenario; World-wide Water resources Management; Water quality standards — Drinking water standards Industrial effluent standards [3 hrs Module II:
	Physico-Chemical Treatment Technology: Aeration, Ion exchange, Ozone treatment adsorption. Chemical coagulation-precipitation, settling, flocculation theorems Chlorination, advanced scheme for municipal water treatment. [6hrs.] Module III:
	Biological Treatment: Basics of biological water treatment, relevant kinetics biological reactor configurations, Activated sludge process, trickling filtration, lagoor treatment, submerged aerators, upward flow sludge blanket reactor, rotating disbiological contactors, advances in biological treatment. [7hrs.] Module IV:
	Membrane Treatment: Different membranes and modules in water treatment Transport mechanisms in membrane separation; Principles of Forward and Reverse osmosis; Membrane distillation, Micro and ultrafiltration; Nanofiltration and hybrid processes in water treatment processes. [7 hrs.]
	Module V:
	Industry-specific advanced water treatment schemes: Petroleum refinery waste treatment, coke-oven waste treatment, pharmaceutical waste treatment, tanner
	wastewater treatment. [5 hrs.]
	Module VI
	Air Pollution
	Environmental threats
	Role of Atmosphere in dispersion, Plume behavior
	Dispersion problems and Stack Design (Tutorial):
	Control devices – Cyclone Separators, ESP, Venturi scrubber, gravity separator, filters
	Design Problems (Tutorial)
	Abatement of gaseous pollutants & VOCs [10 hrs.
	Module VII:
Text	Solid and hazardous Waste management [4 hrs.
Books,	Suggested Text Books: 1. Industrial water treatment Process Technology, P. Pal, Elsevier Science
and/or	Membrane Technology in Environmental Pollution Control, P.Pal
referenc	3. Environmental Pollution Control Engineering – C.S. Rao
e	Suggested Reference Books:
material	Groundwater Arsenic remediation: Treatment Technology and Scale up, P. Pal, Elsevier Science
	2. Handbook of Chlorination and Alternative disinfection, Geo. Clifford White, Wiley 3. Water Treatment Plant Design, Stephen J. Randtke, Michael B. Horsley(EDs.), ASCE
	4. Water Technology, N.F. Gray, Elsevier Science

2023

CURRICULUM AND SYLLABUS FOR DUAL DEGREE IN CHEMICAL ENGINEERING

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4			PO8	PO9	PO10	PO11	PO12
CO1						3					
CO2	3	3	3		1						
CO3							3				
CO4					1			1		1	

Correlation levels 1, 2 or 3 as defined below:

FIFTH SEMESTER

	Depart	tment of Che		- ineering								
Course	Title of the course	Program			ntact hours		Credit					
Code		Core	Lecture	Tutorial	Practical	Total						
		(PCR) /	(L)	(T)	(P) [#]	Hours						
		Electives	(-)	(' '	()	110013						
		(PEL)										
CHC501	INSTRUMENTATION	PCR	3	1	0	4	4					
	AND PROCESS CONTROL											
Pre-requis	ites	Course Assessment methods (Continuous (CT), mid-term										
		(MT) and end assessment (EA))										
_	e of applied mathematics,	CE+MT+EA										
Unit opera												
Course	• CO1: Understand the	principles	of industr	ial instrum	ientation ai	nd meas	urement					
Outcomes	•	املاما ممانات	ام م الماسات	nio augtaur	ما معمل محملات	-0 +bc! +	ransisst					
	CO2: Develop mathem responses	iaticai modei	is of dynar	nic system:	s and analy	ze their t	ransient					
	responses.CO3: Design control	lers for nr	ncess con	trol annlic	rations and	l evaluat	te their					
	performance.	icis ioi pi	00033 0011	tioi applic	acions and	Cvalda	ic then					
	CO4: Integrate control :	systems with	instrument	tation for a	utomated pr	ocess ind	ustries.					
Topics		Module 1: Introduction to Process Control and Instrumentation (14 Hours)										
Covered	Overview of process control systems: Components and objectives.											
	Types of instrume		•	•	-							
	 Measure process 	variables: Te	emperature	e, pressure	, flow, and I	evel.						
	Module 2: Dynamic Mod	deling and Sy	stem Beha	avior (14 H	ours)							
	First-order and see	econd-order	dynamic sy	stems.								
	 Linearization of n 	•										
	Transient response	•	•	•								
	Module 3: Control Syste		• •	-								
	Feedback control			_								
	Stability analysis	_										
	Frequency responses		•									
	Module 4: Advanced CoCascade, feedfor	_	-	-	(14 nours)							
	 Distributed contr 				rol and dat	a acquisi	tion					
	(SCADA).	or systems (L	oco), supci	Visory Corn	iroi, aria aat	a acquisi	CIOII					
	Applications in ch	nemical proce	ess industr	ies.								
Text	Suggested Text Book:											
Books,	Process Systems Ana	lysis and Cor	ntrol, Dona	ld Coughar	nowr McGra	w-Hill						
and/or	Science/Engineering/Ma	•		_								
reference	2. Chemical Process cor		•	•	8							
material	3. Essentials of Process	Control, Luy	ben et al. N	ИcGraw-Hi	II Companie	s (August	1,					
	1996)											
	Suggested Reference Boo											
	· ·	nas Marlin, M	1cGraw-Hil	l Education	; 2nd Interr	national e	dition					
	(July 1, 2000)	L. Process control, Thomas Marlin, McGraw-Hill Education; 2nd International edition (July 1, 2000)										

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	-	-	-	-	-	-	-	2
CO2	3	3	3	3	-				-	-	-	3
CO3	3	3	3	3	2	-	-	-	-	-	2	3
CO4	3	3	3	3	2	-	-	-	-	2	2	3

Correlation levels 1, 2 or 3 as defined below:

	Depa	rtment of Ch	emical Eng	ineering							
Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit				
Code		Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P) [#]	Total Hours					
CHC502	MASS TRANSFER-II	PCR	3	1	0	4	4				
Pre-requisit	es	Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))									
CHC 403, CH	HC301	CT+MT+EA									
Outcomes	 CO1: Understanding fundamentals of some major Mass transfer operations CO2: Application of design principles for mass transfer devices CO3: Learning operations of various mass transfer systems CO4: Building foundation for process intensification CO5:Motivation towards innovations for novel systems of mass transfer 										
Topics Covered	Module-I Humidification & Deh Dehumidification Wet charts, characteristics operation of cooling too Module-II Drying: Theory and r classification and select characteristics of mater Module-III Distillation processes: Equilibrium and flash	& dry bulb of saturated wer, Design possible of mechanism of indurials, perform	thermoment and unsate roblems of drying, istrial drye mance and id equilibi	try, Constracturated values steady asteronaction of left in the control of the co	oor- gas m and unstead tion of dry patch and c	use of hixtures, of [10] dy state ing rates continuous [10 hr	numidity design & hrs.] drying, s, drying as dryers rs.]				

Rectification of binary systems, enthalpy-composition diagram and construction. [6 hrs.]

Module-IV

Rectification column design methods: Lewis-Sorel &Ponchon–Savarit, McCabe-Thiele method, Design problems [6 hrs.]

Module-V

Special distillation processes: Membrane, molecular, extractive, catalytic Distillation, multi-component Distillation & introduction to ASPEN PLUS [9 hrs.]

Module-VI

Theory of crystallization, Nucleation and crystal growth, Batch and continuous crystallizers, Design calculations for crystallizers [3 hrs.]

Module- VII

Membrane separation basics, classification, transport & exclusion mechanisms, Membrane modules and design problems on micro, ultra, nano& reverse osmosis [3hrs.]

Tutorial on above topics and class Tests

[14 hrs.]

Text Books, and/or reference material

Suggested Text Books:

- 2. Unit Operations of Chemical Engineering: W.L. McCabe & J.C. Smith
- 3. Principles of Mass Transfer & Separation Processes: B. K. Dutta
- 4. Mass Transfer Operations: R.E. Treybal

Suggested Reference Books:

- 1. Introduction to chemical engineering: W.L.Badger&J.T.Banchero
- 2. Membrane Science & Technology, Osada& Nakagawa
- 3. Industrial Water Treatment Process Technology, P. Pal, Elsevier Science
- 4. Chemical Engineering: Coulson & Richardson
- 5. Principles of Unit Operation: C. J. Geankoplis

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	1	2	2	3	2	2	2	1	2	2	1
CO2	3	2	3	2	3	1	1	2	1	2	2	2
CO3	3	1	3	2	2	2	1	2	2	1	3	2
CO4	3	2	3	1	2	1	1	3	2	2	3	2
CO5	3	1	2	2	2	3	1	2	2	2	2	2

Correlation levels 1, 2 or 3 as defined below:

	Dep	artment of Che	emical Eng	ineering									
Course	Title of the course	Program	Total Nur	mber of co	ntact hours		Credit						
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total	-						
		Electives (PEL)	(L)	(T)	(P) [#]	Hours							
CHC503	CHEMICAL	PCR	3	1	0	4	4						
	PROCESS												
Dro roquicito	TECHNOLOGY	Course Assessment methods (Continuous (CT), mid-term (MT)											
Pre-requisite	:5			•	inuous (C1),	mia-terr	11 (1711)						
Knowledge o	of Unit operations and	and end assessment (EA)) CT+MT+EA											
Unit processe	•	CITIVITIEA											
Course	CO1: Ability to understand the manufacturing of various inorganic and org												
Outcomes	chemicals.												
	• CO2: Ability to understand the process flow diagram and various process												
	parameters.												
	CO3: Ability to id	CO3: Ability to identify and solve engineering problems during production.											
	CO4: Knows curr			•									
Topics	Module 1: Introduction to Process Industries and Development (14 Hours)												
Covered		ρ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο											
		Process flow diagrams (PFDs) and piping and instrumentation diagrams (P&IDs).											
	•	and raw materi Cement and gla											
	Module 2: Inorganic	_	•	•	: 5.								
	_	g processes for			h), nitric acid	d (Ostwal	d), and						
		contact process			.,,	. (
	Chlor-alkali in	dustry: Chlorine	and causti	c soda prod	duction.								
	Fertilizers: Ur	ea and NPK com	pounds.										
	Module 3: Organic Cl		-	•									
		ethanol, metha		etic acid.									
	· ·	propylene deriv											
		o bioprocess te	_										
	Module 4: Advanced	duction: Steam	•	•	lvcic								
	, , ,	try and catalysis	_		•								
		re, utilization, a			·.								
1	•	based processe	_		uels.								
Text Books,	Suggested Text Book	•											
and/or	1. Dryden, C. E., and	d Rao, M.G. (Ed	l.), Outline:	s of Chemic	cal Technolo	ogy Affilia	ted East						
reference	West Press.												
material	2. Shreve, R.N., & B	rink, J.A. <i>Chem</i>	ical Proces	s Industries	. McGraw H	lill.							
	Suggested Reference				4h								
	1. Austins, G.T., She												
	2. Rao, M.G. Outline	-					_						
	3. S. K. Ghoshal, S.	•	Datta, Int	roduction t	o Chemical	Technolo	gy, Tata						
	McGraw Hill, New Do			cı : :	_	, ,	\ ^ (*)						
	4. Moulijn, J.A., Ma	ккее, M., & Die	pen, A.E.V	. Chemical	Process Tec	nnology.	wiley.						

		•				<u> </u>						
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	-	2	3	-	3	-	-	-	-	-	-	-
CO2	-	2	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	3	-	-	-	-	-	-	-
CO4	-	-	-	-	-	-	-	-	-	1	2	-

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

		partment of Che	mical Engi	neering			
Course	Title of the course	Program	Total Nu	mber of co	ntact hours	;	Credit
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total	
		Electives	(L)	(T)	(P)	Hours	
		(PEL)					
CHC504	INDUSTRIAL	PEL	3	0	0	3	3
	SAFETY AND RISK						
	MANAGEMENT						
Pre-requisit	es	Course Assess	ment meth	nods (Cont	inuous (CT),	mid-teri	n (MT)
		and end assess	sment (EA))			
None		CT+MT+EA					
Course	CO1: Understand	the principle	es of ind	ustrial sa	fety and	risk asse	essment
Outcomes	techniques to pre	vent hazards in	chemical ir	ndustries.			
	CO2: Analyze and	apply safety ma	anagement	t systems,	regulatory t	framewo	rks, and
	standards to mitig						
	CO3: Design safe			emergency	response s	strategies	for risk
	reduction in indus	· · · · · · · · · · · · · · · · · · ·					
Topics	Module 1: Fundar			•			
Covered		of industrial safe				ndustries	•
	• •	dustrial acciden	-		-		
	•	of hazard and ris		_		х.	
		ntification meth			, FMEA.		
		es of major indu					
	Module 2: Risk Ma	-	-	-	•		
		ment technique	•	•			
		dards and regul					
		fety in chemical	_	_	=	ation.	
		response planr	_	_	_		
	· ·	iting and compli		•	cesses.		
	Module 3: Safety	_	•	14 Hours)			
	•	safer design pri	•				
	 Fire and ex 	plosion prevent	ion and co	ntrol.			

	Personal protective equipment (PPE) and safety training.
	 Safety in plant layout, equipment design, and automation.
	 Role of digital tools in safety monitoring and emergency response.
Text Books,	Textbooks:
and/or	1. Heinrich, H.W., Industrial Accident Prevention: A Scientific Approach,
reference	McGraw Hill, 1980.
material	2. Crowl, D.A., & Louvar, J.F., Chemical Process Safety: Fundamentals with
	Applications, Prentice Hall, 3rd Edition, 2011.
	Reference Books:
	1. Lees, F.P., Loss Prevention in the Process Industries, Butterworth-
	Heinemann, 4th Edition, 2012.
	2. Goetsch, D.L., Occupational Safety and Health for Technologists, Engineers,
	and Managers, Pearson, 8th Edition, 2015.
	3. Gupta, R.C., Industrial Safety and Environment, Laxmi Publications, 2006.
	4. Mannan, S., Lees' Process Safety Essentials, Butterworth-Heinemann, 1st
	Edition, 2013.

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3		3	1	2	3		2	1	3	3	2
CO2	3		3	1	2	3		2	1	3	3	2
CO3	3		3	1	2	3		2	1	3	3	2
CO4	3		3	1	2	3		2	2	3	3	3

Correlation levels 1, 2 or 3 as defined below:

	D	epartment of Ch	emical Eng	gineering							
Course	Title of the	Program Core	Total Nur	mber of co	ntact hours		Credit				
Code	course	(PCR) /	PCR) / Lecture Tutorial Practical Total								
		Electives (PEL)	(L)	(T)	(P)	Hours					
CHS551	HEAT TRANSFER	PCR	0	0	3	3	2				
	LABORATORY										
Pre-requisit	es	Course Assessm	ent metho	ds: Contin	uous (CT) ar	nd Viva-V	oce				
Basic know	ledge of heat	CT + Viva-Voce									
transfer											
Course	CO1: Demonstrate	practical applica	ations of h	neat transf	er principle	s in con	duction,				
Outcome	convection, and rac	diation.									
S	CO2: Perform exp	eriments on hea	at transfer	r equipme	nt and inte	erpret re	sults to				
	validate theoretical	models.									
	CO3: Design and a	analyze the perf	ormance o	of heat ex	changers, e	evaporato	ors, and				
	other industrial systems.										
	CO4: Develop skills to troubleshoot and optimize heat transfer processes in										
	laboratory-scale eq	uipment.									

Topics	List of Experiments:
Covered	Determination of thermal conductivity of a metal rod.
	2. Study of heat transfer in a composite wall.
	3. Measurement of thermal conductivity of an insulating material.
	4. Experiment on free convection heat transfer from a vertical cylinder.
	5. Forced convection heat transfer in a circular pipe.
	6. Study of boiling heat transfer characteristics.
	7. Performance evaluation of a shell-and-tube heat exchanger.
	8. Determination of emissivity of a gray surface using an emissivity apparatus.
	9. Heat transfer by radiation: Stefan-Boltzmann law verification.
	10. Study of multiple-effect evaporators for concentration processes.
Text	Textbooks:
Books,	1. Holman, J.P., Heat Transfer Laboratory Manual, McGraw Hill, 2010.
and/or	2. Kern, D.Q., <i>Process Heat Transfer</i> , McGraw Hill, 1950.
reference	Reference Books:
material	1. Incropera, F.P., & DeWitt, D.P., Fundamentals of Heat and Mass Transfer, Wiley,
	2011.
	2. Gupta, C.P., & Prakash, R., Engineering Heat Transfer, Nem Chand & Bros, 2014.
	3. Rohsenow, W.M., Hartnett, J.P., & Cho, Y.I., Handbook of Heat Transfer, McGraw
	Hill, 2018.
	4. Özisik, M.N., Heat Transfer: A Basic Approach, McGraw Hill, 1985.

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	2	3	3	-	-	-	-	2	-	-	1
CO2	3	3	3	3	-	-	-	-	2	ı	-	1
CO3	3	2	3	2	2	-	-	-	2	-	1	1
CO4	3	2	3	3	2	-	-	-	3	2	1	2

Correlation levels 1, 2 or 3 as defined below:

	Department of Chemical Engineering												
Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit						
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total							
		Electives	(L)	(T)	(P)	Hours							
		(PEL)											
CHS552	MECHANICAL	PCR	0	0	3	3	2						
	OPERATION												
	LABORATORY												
Pre-requis	sites												
		Viva-Voce											
Course	• CO1: Unders	tand of the f	undamenta	al princip	les underly	ing me	chanical						
Outcomes													

	CO2: Know the principles of different mechanical operation equipment.
	CO3: Design and analyse mechanical operation equipment.
	CO4: Compare performances and select type of mechanical operation
	equipment.
	CO4: Learn industrial applications of size reduction equipment (k)
Topics	1. To verify Rittinger's Law in a Jaw Crusher
Covered	2. To Study comminution through a Ball Mill and calculate its theoretical Efficiency
	3. Studies on the performance of the Cyclone Separator-(I. To study the
	characteristics of a cyclone separator. II. To measure the fractional collection
	efficiency of different particle size ratio)
	4. To determine overall effectiveness of a vibrating screen for a given solid sample
	of unknown size
	5. To determine the mixing index of flour and pulses in kneader mixer
	6. To determine the power consumption in a propeller mixer and compare it with
	the actual power requirements in agitated vessel
	7. To run the operation of Plate and Frame Filter Press For filtration of calcium
	carbonate slurry. (I. To determine the lost quantity of calcium carbonate after
	filtration process.)
	8. To study the influence of different flow rates of water on separation efficiency
	of an Elutriator
	9. To determine average size of a group of particles in a mixture based on volume
	and surface and graphical representation of screen analysis data for size
	distribution of the mixture.
	10. To study the working of continuous type thickener [36 hrs]
Text Books,	Suggested Text Books:
and/or	Lab Manual
reference	1. Unit Operations- G. G Brown (CBS Publishers & Distribution)
material	2. Introduction to Chemical Engineering-Badger and Banchero (McGraw-Hill)
	3. Transport Processes and Unit Operation-C. J. Geankoplis (Prentice-Hall India)
	Suggested Reference Books:
	1. Mechanical Operations for Chemical Engineers-C.M. Narayanan, B.C.
	Bhattacharyya (Khanna Publishers)
	2. Unit Operations Of Chemical Engineering-Mc. Cabe Smith &Harriot (TMH)
	3. Unit Operation-C.J. King
	4. Coulson & Richardson's Chemical Engineering Volume.2

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3		2									
CO2		3	2									
CO3			3		2							
CO4			3		2							
CO5											2	1

Correlation levels 1, 2 or 3 as defined below:

Fifth (5th) Semester Department Electives

Course	Title of the course	Program	Total Nur	nber of con	tact hours		Credit				
Code		Core	Lecture	Tutorial	Practical	Total					
		(PCR)/	(L)	(T)	(P)	Hour					
		Electives				s					
		(PEL)									
CHE510	PROCESS	PCR	3	0	0	3	3				
	INTENSIFICATION AND										
	MEMBRANE										
	TECHNOLOGY										
Pre-requis	sites	CHC302: Che	mical Engine	eering Therr	modynamics	5					
	_	CHC301: Prod	ess Calculat	tions							
Course	CO1: Understand	and apply _l	process in	tensificatior	n regime	for sus	tainable				
Outcomes	Industrialization										
	CO2: Ability to develop innovative engineering solutions to the global problems on										
	energy,	energy,									
	environment and sust	tainability									
	CO3: Ability to techno	o-economically	analyse, de	sign and op	erate sustai	nable sys	tems				
Topics	Module 1:										
Covered	Basics of Process In	tensification,	definitions,	approache	s, benefits,	role of	process				
	intensification in sus		•	-	•	_	•				
	Matrices for chemistr	•	•	rbon efficie	ncy, atom e	conomy,	reaction				
	mass efficiency, Enviro	onmental facto	or (E).								
	Module 2:										
	Process Intensification	•									
	Catalytic distillation:	•		•			Process				
	Intensification throu	_			reactors, o	scillatory	battled				
	reactors, sonochemica	ai, nydrodynan	nic cavitatio	n reactors.							
	Module 3:		ala a a d Dan		Carler alla	l- N 4					
	Membrane Technolog					_					
	based technology. Pro			•							
Taut	sector, industrial wast		irough ivien	nurane-base	eu technolog	gy adopti	on.				
Text	Suggested Text Book:			العدالمامم		al D.D-!	Classife				
Books	1. Membrane based	_	ior environi	mentai poli	ution contr	oi, P.Pal,	Eisevier				
and/or	Sci., Amsterdam, 2020										
reference	00		coccoc A 4	Corak And	rzni Ctankia	wicz od:	od BCC				
material	1. Intensification of	=			=						
	publication, A.Stankie	•	• •		ie Chemical	Processii	ig Plant,				
	Process intensification			, ,	Icovier Scie	nco Ama	tordam				
	2.Industrial Water Tre	eatinent Proce	:55 16(1110)(ugy, r.Pai, i	isevier scie	nice, Ams	steruarii,				
	2017.										

2023

CURRICULUM AND SYLLABUS FOR DUAL DEGREE IN CHEMICAL ENGINEERING

Mapping of CO (Course outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	2	3	2	-	-	3	-	-	-	2
CO2	3	2	3	2	2	-	-	-	-	-	-	2
CO3	3	3	2	3	3	3	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

Carrea	T:+ f +	Dua sua ua Caua	Tatal Ni.				C d:4				
Course	Title of the	Program Core			ntact hours		Credit				
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives (PEL)	(L)	(T)	(P)	Hours	_				
CHE511	MATERIAL	PCR	3	0	0	3	3				
	SCIENCE AND										
	ENGINEERING										
Pre-requisite		CHC301: Process		-							
Course	CO1: Understand to			=		_					
Outcomes	CO2: Analyze mate						sses.				
	CO3: Evaluate and	select materials for	elect materials for specific engineering applications.								
Topics	Module 1: Fundam	entals of Materia	l Science (14 Hours)							
Covered	Atomic stru	cture, bonding, ar	nd crystalli	ne structur	es.						
	 Defects in m 	 Defects in materials: point, line, and surface defects. 									
	 Phase diagra 	 Phase diagrams and phase transformations. 									
	 Mechanical 	 Mechanical properties: elasticity, plasticity, and toughness. 									
	Module 2: Advance	ed Materials and	Properties	(14 Hours)						
	 Composite r 	naterials: types, p	roperties,	and applic	ations.						
	 Polymers ar 	d ceramics: prope	erties and	processing	techniques						
	 Corrosion ar 	nd degradation of	materials.								
	 Thermal and 	d electrical proper	ties of ma	terials.							
	Module 3: Materia	ls in Engineering	Applicatio	ns (14 Hou	rs)						
	 Material sel 	ction criteria for chemical process equipment.									
	 High-perform 	mance materials:	ance materials: superalloys, ceramics, and composites.								
	 Case studies 	s: materials used i	als used in heat exchangers, reactors, and pipelines.								
	 Sustainabilit 	y in material sele	ction.								
Text Books	Textbooks:										
and/or	1. Callister, W. D	., & Rethwisch,	D. G. M	aterials Sc	ience and	Engineer	ing: An				
reference	Introduction. Wiley	, 10th Edition, 20	20.								
material	2. Smith, W. F., 8	. Hashemi, J. <i>Fou</i>	ındations	of Materia	ıls Science	and Engi	neering.				
	McGraw-Hill, 5th E	dition, 2010.									
	Reference Books:										
	1. Van Vlack, L. H	I. Elements of N	1aterials S	cience and	l Engineerii	ng. Pears	on, 6th				
	Edition, 1989.	_			_						
	2. Askeland, D. R.,	& Wright, W. J.	Essentials	of Materio	als Science	and Engi	neering.				
	Cengage, 3rd Edition	<u> </u>					-				
	3. Shackelford, J.		o Materia	ls Science	for Enginee	ers. Pears	on, 8th				
	Edition, 2015.			•			-				
	*	4. Budinski, K. G., & Budinski, M. K. <i>Engineering Materials: Properties and Selection</i> .									
	Pearson, 9th Editio		-	-	•						

2023

CURRICULUM AND SYLLABUS FOR DUAL DEGREE IN CHEMICAL ENGINEERING

Mapping of CO (Course outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
COs													
CO1	3	3	3	3	2	-	3	-	-	-	-	-	
CO2	3	3	3	2	3	-	-	-	-	-	-	2	
CO3	3	3	3	3	3	-	-	-	-	-	-	3	

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

Course	Title of the	Program Core	Total Number of contact hours								
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives (PEL)	(L)	(T)	(P)	Hours					
CHE512	ENERGY	PCR	3	0	0	3	3				
	MANAGEMENT										
	AND PROCESS										
	OPTIMIZATION	T									
Pre-requisite		CHC302: Chemical Engineering Thermodynamics									
Course	•	idea about the energy intensity in industry context and									
Outcomes	benchmarking ene	•.		c							
	CO2: To learn the		-		• .		ndustry,				
	finding optimization			•		•	!				
		CO3: To learn the fundamental knowledge of different Process optimization									
Topics	techniques to increase profit										
Topics Covered	Module I: Basic concept and	introduction									
Covered	Challenges faces		ustrias D	aradiom o	hift of ch	emical h	uisiness				
	Background of en										
	_	• .	•		•	•	•				
	energy efficiency, Four key elements for continuous improvement, Theory of energy intensity, Definition of process energy intensity, Concept of fuel equivalent, Energy										
	intensity for a to	•	• .			•	•				
	historian, Convert		_	- .	•						
	performance index		_	=							
	targets for key inc	= = = = = = = = = = = = = = = = = = =		_	=		·=				
	indicators into ene	ergy dashboard.									
				[10	hrs.]						
	Module II:										
	Pinch Technology	_									
	composite curve, F	•		-	•						
	Minimum hot and	cold utility target	, Optimum	delta T mi	n.	[2	12hrs.]				
	Module III:										
	Heat exchanger Distillation system performance assessment, Basic concept and calculations, understanding performance criteria –U values, understanding pressure										
		• .									
	drop, Improving h	• .		•	•	•	•				
	Fouling mechanism	, ,	•	•		•					
	model for clean cy	•	•								
	loss evaluations, B	_		· -							
	Distillation opera	•		•		_					
	window, Typical ca	•	-	-							
	Building process si		=		=		10hrs.]				
	Energy optimization Module IV:	m for distillation s	yst e m, UV	cran proce	oo optiiiiizdi	.1011.	[101112.]				
	Process optimizati	ion in industryCo	llect onlin	e data for	the whole	oneratio	n cycle				
	Determine the tru					· · ·	·=				
		•			-	•					
	term, How to detect opportunities for optimization, Common tools available to exploit those opportunities.										
	l exploit those onno	irtunities.									

Text Books	Suggested Text Books:
and/or	1. Energy and process optimization for the process industries By Frank (Xin X) Zhu (
reference	Wiley, ISBN 978-1-118-10116-2)
material	2. Profit Maximization Techniques for operating Chemical Plants, Sandip Kumar
	Lahiri, Wiley, ISBN 978-1-119-53215-6
	Suggested Reference books:
	1.Process Heat Transfer – D.Q.Kern (McGraw-Hill)

POs	РО	РО	РО	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO12	PO13
	1	2	3							0	1		
COs													
CO1	2	2	2	1	2	1	1	2	1	2	2	1	2
CO2	3	3	3	2	3	2	1	3	1	3	3	1	3
CO3	3	3	3	2	3	2	1	3	1	3	3	1	3

Correlation levels 1, 2 or 3 as defined below:

		epartment of	f Chemical Eng	gineering							
Course	Title of the course	Program	Total Numb		ct hours		Credit				
Code		Core (PCR)	Lecture (L)	Tutorial	Practical	Total	1				
		/ Electives	, ,	(T)	(P)	Hours					
		(PEL)									
CHE513	BIOPROCESS &	PEL	3	0	0	3	3				
	BIOREACTOR										
	ENGINEERING										
Pre-requisi	tes		ssment metho	•	uous (CT), r	mid-term	(MT)				
			essment (EA))								
•	HC 403, CHC501	CT+MT+EA									
Course	CO1: Apply kinet			_		tor.					
Outcome	CO2: Analyze pe										
S	CO3: Integrate d	ifferent type	of reactor and	reactor as	sembly.						
Topics	Module I:		_								
Covered	Introduction to the kinetics of Bioprocess; Free enzyme kinetics; Inhibition enzymatic reactions. Kinetics of immobilized enzymes. Bioreactors for enzymatic										
	·	is. Kinetics o	t immobilized	d enzymes	. Bioreacto		-				
	reactions.					l	[15 hrs.]				
	Module II:	6					1 1				
	Cell growth kinetic			-	-						
	cell growth system	. Reactors for	cell growth s	system. Co	mbination (
	cell growth. Module III:					l	[15 hrs.]				
		systems Cl	abal and lov	sal stabilit	v analyses	of Dior	cactors				
	Multiplicity in Bio Bioreactor controll	•									
	measurement and	• .									
	and control, Detect				ioi, pri/reu		10 hrs.]				
	Module IV:	ion and pieve		oarri.		l	10 1113.]				
		ssing in hion	rocesses. Intr	a and ext	racellular n	roduct ex	traction				
	Downstream processing in bioprocesses; Intra and extracellular product extraction and separation. Industrial application of bioprocesses. [10 hrs.]										
Text	Suggested Text Boo				· ·· • · J						
Books,	1. J. E. Bailey, D. F.		mical Enginee	ring Funda	mentals. Se	cond Edit	ion. Mc.				
and/or	Graw Hill Inc., Sin	•	•		,		,				
reference	2. H. W. Blanch, D.	• .		ineering, S	pecial India	n Edition	, Marcel				
material	Dekker Inc. New		J	O,			•				
	3. M. L. Shuler, F.	•	cess Enginee	ring - Basi	c Concepts	, Second	Edition,				
	Prentice Hall of I				-						
	Suggested Reference	<u>ce Books:</u>									
	1. P. M. Doran, Bio	process Engin	eering Princip	les, Acade	mic Press, C	California,	2009.				
	2. J. Nielsen, J. Villa	adsen, G. Lide	n, Bioreaction	n Engineeri	ng, Second	Edition, S	Springer,				
	2007.										
	3. D. G. Rao, Intro	duction to Bi	ochemical En	gineering,	Tata McGra	aw-Hill Pu	ublishing				
	Company Ltd., N	ew Delhi, 200)8.								

2023

CURRICULUM AND SYLLABUS FOR DUAL DEGREE IN CHEMICAL ENGINEERING

Mapping of CO (Course Outcome) and PO (Programme Outcome)

	mapping of co (course outcome) and to (troglamme outcome)													
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
COs														
CO1	3	2	3	2	3	1	1	2	2	2	3	1		
CO2	3	2	3	2	3	1	1	2	2	2	3	1		
CO3	3	2	3	2	3	1	1	2	2	2	3	1		

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

SIXTH SEMESTER

	Denartm	nent of Humai	nities and S		~es					
Course	Title of the course	Program	ı	mber of con			Credit			
Code	Title of the course	Core	Lecture	Tutorial	Practical	Total	Credit			
Couc		(PCR) /	(L)	(T)	(P)	Hours				
		Electives	(L)	(1)	()	riours				
		(PEL)								
HSC631	ECONOMICS AND	PCR	3	0	0	3	3			
1130031	ACCOUNTANCY		3							
Pre-requi:		Course Asse	essment me	thods (Con	tinuous (CT)	. mid-tern	n (MT)			
		and end ass		•		,	(,			
NIL		CT+MT+EA								
Course	●CO1: To review b	L	principles	with studen	its;					
Outcomes						d for carr	ying out			
	economic analysi		•				. •			
	●CO3: To educate			_	•		-			
	elements of a typ	ical manufact	ured produ	ct, an engir	ieering proje	ct or serv	ice, with			
	a view to determ									
Topics	Module I:									
Covered	PART 1: Economics									
	Group A: Microeco	nomics								
	Economics: Basic Concepts									
	Theory of Produc	tion, Cost ar	nd Firms, <i>i</i>	Analyses o	f Market St	tructures:	Perfect			
	Competition, Mond	opoly Market,	General Eq	uilibrium &	Welfare Eco	onomics				
							[14 hrs.]			
	Module II:									
	Group B: Macroeco	onomics								
	Introduction to Ma		•							
	of Equilibrium Le		•		and Incom	ne, Inflat	ion and			
	Unemployment, O	utput, Price ar	nd Employm	nent.						
							[14 hrs.]			
	Module III:									
	PART 2: Accountar	•		D						
	Introduction to Ac	counting, Fina	incial State	ment Prepa	ration and A	maiysis. Fi	nancial			
	Ratio Analysis.						[1.4 brc]			
Toyt Book	c Suggested Tout De-	aks.					[14 hrs.]			
Text Book	ss, Suggested Text Boo 1. Koutsoyiannis: N		scanamics							
and/or reference	•									
material			nomics M: Financial Accounting; S. Chand & Sons							
material	4. Ashoke Banerjee	• •			ig, J. Cilailu	& JUIIS				
	5. W. H. Branson: N				(2nd ed)					
	6. N. G. Mankiw: M				(Zila ca)					
	Suggested Referen		, 							
	1. Dornbush and Fi		conomic Th	eorv						
	2. SoumyenSikder:			•						
	z. soumyensikaer:	rinciples of f	viacroecon	UITIICS						

- 3. Anindya Sen: Microeconomics: Theory and Applications
- 4. Pindyck & Rubenfeld: Microeconomics
- 5. Maheshwari: Introduction to Accounting; Vikas Publishing
- 6. Shukla, MC, Grewal TS and Gupta, SC: Advanced Accounts; S. Chand & Co.

СО	PO1	PO2	РО3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
CO1	3	3	3	3	2	3	2	3	2	3	3	3
CO2	3	3	3	3	3	3	2	2	3	3	3	3
CO3	3	3	3	3	3	3	2	2	3	3	3	3

Correlation levels 1, 2 or 3 as defined below:

		epartment of Ch	emical Eng	gineering							
Course	Title of the course	Program Core	Tota	l Number o	f contact ho	ours	Credit				
Code		(PCR)/	Lecture	Tutorial	Practical	Total					
		Electives	(L)	(T)	(P)	Hours					
		(PEL)									
CHC601	CHEMICAL PLANT	PCR	3	0	0	3	3				
	DESIGN AND										
	ECONOMICS										
Pre-requisi	tes	Course Assessme	ent method	ds (Continu	ous (CT)and	l end					
		assessment (EA)									
•	tions and Chemical	CT+MT+EA									
	nemical Process										
	y, Optimal design										
methods	1										
Course	CO1: Managing various process design projects										
Outcomes	CO2: Understanding	g process design o	concept ba	sed on mas	ss-energy ba	lance an	d				
(CO)	optimization										
	CO3: Determining d	esign-project fea	sibility and	implemen	tation time						
Topics	Module I:										
Covered	Plant Design life cycle: Various stages of a plant design project – managing the various										
	stages of plant design	gn project – vari	ous appro	aches. Var	ious schedu	_					
	plant design						[10hrs.]				
	Module II:										
	Plant Design Projects										
	mass balance and										
	engineering package	• •		•							
	chemical plants; Type	es and selection o	f materials	of constru	ction for pr	ocess equ	•				
	Madula III.						[12 hrs.]				
	Module III:	osian. Estimatia	of cost c	nd profit	tayoo 0 da	nrociatia	n roto -				
	Feasibility of Plant D	esign: Estimation	i or cost a	na pront -	taxes & de	preciatio	m-rate o				

	return (ROI)-case studies; Screening of Process Alternatives; Concepts of investment, interest and time value of money; Profitability analysis. Analysis of alternative investments and replacements. [10hrs.]
	Module IV:
	Case studies: Design of Reactors; Design of Separation Processes; Energy Integration and
	Design of Heat Exchanger Network (Pinch Technology);[13 hrs.]
TextBook	Suggested Text Books:
s,	1. Peters, M S, Timmerhaus, KD, Plant Design and Economics, McGraw Hill, 1991
and/or	2. Towler G, Sinnott, Ray, Chemical Engineering Design, Elsevier, 2008
reference	Suggested Reference Books:
material	1. Rudd DF, Watson, CC. Strategies of process engineering, John Wiley, 1968
	2. Seader WD, Seader, JD, Lewin, DR. Product & process design principles, John Wiley,
	2004.

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3			1							1	1
CO2	3				1						1	1
CO3	3			1	1						1	1

Correlation levels1, 2 or 3 as defined below:

	Departr	nent of Chen	nical Engir	eering						
Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit			
Code		Core	Lecture	Tutorial	Practical	Total				
		(PCR) /	(L)	(T)	(P)	Hours				
		Electives								
		(PEL)								
CHC602	PETROLEUM REFINING &	PCR	3	1	0	4	4			
	PETROCHEMICALS									
Pre-requisi	tes	Course Asse	Course Assessment methods (Continuous (CT), mid-term							
		(MT) and end assessment (EA))								
None		CT+MT+EA								
Course	CO1: Understanding tee	chnical, econ	omic, envi	ronmental	and interna	ational m	arket			
Outcomes	issues in petroleum refinin	g business								
	 CO2: Understanding co 	rrelation of p	etroleum	properties	with syster	n design	and			
	operation									
	CO3: Understanding design and safe operation of complex refinery units for various									
	petroleum products									
	CO4: Knowledge of application of Chemical Engineering Principles in one of most									
	relevant industrial sectors	relevant industrial sectors of the economy								

	CO5: Ignited minds with passion for innovation and sustainable development
Topics	Module I:
Covered	Petroleum - Origin and Occurrence, Exploration, Estimation and recovery [3 hrs.]
	Module II:
	Evaluation of crude, Properties, testing and specifications of petroleum products [6hrs.]
	Module III:
	Technical, Economic, environmental and societal issuesinPetroleum Refining and
	marketing business. [4 hrs.]
	Module IV: Processing of Crude Petroleum: crude pre-treatment, Atmospheric and
	Vacuum distillation, column control schemes. [6 hrs.]
	Module V:
	Cracking, Reforming, Vis-breaking, Delayed Coking processes to cater to the market
	demand of various petroproducts, Environmental pollution associated with such
	processing and abatement strategies [10 hrs.]
	Module VI:
	Rebuilding possibilities with small molecules: Alkylation, Isomerization. [3 hrs.]
	Module VII: Production of finished petroleum goods like, LPG, Kerosene, Petrol,
	Diesel, Lubricating Oil, Bitumen, Hydro processing; Innovations and novel approaches in
	Hydrogen production as green fuel. [10 hrs.]
	Module VIII: Petrochemical- feedstocks, classification of petrochemicals, Cracking of
	raw feed stock for intermediate feed stock production, manufacture of important
	petrochemical products [8 hrs.]
Text	Suggested Text Books:
Books,	1. Petroleum Refining Engineering: W.L. Nelson
and/or	2. Advanced Petroleum Refining: G.M. Sarkar
reference	3. Modern Petroleum Refining: B.K.B. Rao
material	4. Petroleum Refining: J.P. Fauquier
	5. Petroleum Refining Technology: Ram Das
	Suggested Reference Books:
	1. Catalytic Naphtha Reforming: Sc. & Technology: G.M. Antos, A.M. Aitani, J.M.
	Pereira
	2. Environmental Control in Petroleum Refining: J.C. Reis
	3. Petroleum Refining Technology & Economics: J.H. Gary & G.E. Handwerk
	4. Petrochemicals Technology: B.K.B. Rao
	5. Lubricant base oil and wax processing: Avilino Sequeira Jr.
	6. Hydrocarbon Technology Journal (Center for High Technology, Delhi)

	mapping or to the area of the grammer of the gramme											
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	2	2	1	3	2	2	2	3	1	3	1	1
CO2	3	2	3	2	3	1	1	2	1	2	2	2
CO3	3	1	3	2	2	3	1	2	2	1	3	2
CO4	3	2	2	3	1	1	1	3	2	3	3	2
CO5	3	1	2	3	2	3	1	2	3	2	2	2

Correlation levels 1, 2 or 3 as defined below:

	Departme	ent of Chemi	cal Engine	ering							
Course	Title of the course	Program	Total Nu	mber of co	ntact hour	S	Credit				
Code		Core	Lecture	Tutorial	Practical	Total					
		(PCR) /	(L)	(T)	(P)	Hours					
		Electives									
		(PEL)									
CHS 651	PROCESS CONTROL	PCR	0	0	3	3	2				
	LABORATORY										
Pre-requisite	25			•	ontinuous (CT), mid	-term				
		(MT) and e		nent (EA))							
Process Cont	trol and Instrumentation	CT and Viv	a-Voce								
Course	● CO1: Understand the fu	● CO1: Understand the fundamental principles of process control through practical									
Outcomes	experimentation										
	◆ CO2: Handling various ins	truments an	d solve var	ious diffic	ulty levels						
Topics	List of Experiments	•									
Covered	 Study the control valve flow coefficient (C_v) and its inherent characteristics. Study the temperature control trainer and to find out steady state process gain. 										
	1					_	gain.				
	3. Study the level control			•	•	_					
	4. Compare the observed		•	ith the the	oretical tra	nsient re	esponse				
	for the interacting – non-in	.									
	5. Study the step respons	•									
	6. Plot Bode diagram of n	nanometer s	ystems and	d design th	e controlle	r using Z-	·M				
	tuning method.										
	7. Study the root locus of	a manometi	er and nen	ce to dete		_					
Tout Doole	stability.				[36 hrs.	J					
Text Books,	Suggested Text Books:	s and Contro	l Donald (Soughanas	ur MaCrau	1.1:11					
and/or reference	1. Process Systems Analysi			Loughanov	vi iviculaw	·HIII					
material	, ,	Science/Engineering/Math; 2 Edition (1991) 2. Chemical Process Control, G. Stephanopoulos, PHI, (2008)									
materiai											
		Suggested Reference Books: 1. Essentials of Process Control, Luyben et al. McGraw-Hill Companies (1996)									
	T. ESSETTUAIS OF PLOCESS CO	ntiol, Luyber	i et al. IVICC	JI aw-⊓ill C	ompanies (1330)					

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3		2	1	2				1		2		
CO2	3		2	1	2				1		2		

Correlation levels 1, 2 or 3 as defined below:

		Dep	artment of Che	mical Engi	ineering					
Course	Title	of the course	Program	Total Nu	mber of co	ntact hours		Credit		
Code			Core (PCR) /	Lecture	Tutorial	Practical	Total			
			Electives	(L)	(T)	(P)	Hours			
			(PEL)							
CHS652	M	ASS TRANSFER	PCR	0	0	3	3	2		
	L	LABORATORY								
Pre-requis	sites		Course Assessi			inuous (CT),	mid-terr	n (MT)		
			and end assess	sment (EA))					
Mass Tran	nsfer-I	and Mass	CT and Viva-Vo	oce						
Transfer-I	l									
Course			istrate an under	_			s and mo	dels		
Outcomes	5		ate the idea of t			•				
	,		orinciples of ma	ss transfer	phenome	na to chemi	ical proce	ess.		
		industries								
		 CO4: To enable 	• .	blems on	process ar	nd materials	related	to mass		
		transfer phenome								
Topics		•	acteristics of sin	•						
Covered			of diffusivity of	•	-	_	ir			
		•	ormance of dryi	_	•	•				
			eat transfer co-e		•	e & film wis	e conden	isation		
		•	eristics of bubble	•						
			of overall heat		perricient d	or an open p	an evapo	orator		
		7. Calculate hold	•							
		•	flooding & load	ing pheno	mena in a	packed abs	orption t	ower		
Tout Dool		[36 hrs.]	also.							
Text Book		Suggested Text Books: 1. Mass Transfer: R.E.Treybal								
and/or reference			•	aginooring	. \^/ \^/_	aha 8.1 C Cn	ni+h			
			s of chemical er	igineering	. vv.L. IVICC	ane al.C.Sn	111111			
material		Laboratory ma Suggested Referer								
				Congration	Drococco	. D V D.:++				
		 Principles of M 	iass Transfer & :	separation	Processes	s. B. K. DUTTA	đ			

- 1-1-													
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
COs													
CO1	3	1	2	2	3	2	2	2	1	2	2	1	
CO2	3	2	3	2	3	1	1	2	1	2	2	2	
CO3	3	1	3	2	2	2	1	2	2	1	3	2	
CO4	3	2	3	1	2	1	1	3	2	2	3	2	

Correlation levels 1, 2 or 3 as defined below:

		Depa	artment of Che	mical Engi	neering					
Course	Titl	e of the course	Program			ntact hours) 	Credit		
Code			Core (PCR)	Lecture	Tutorial	Practical	Total	1		
			/ Electives	(L)	(T)	(P)	Hours			
			(PEL)							
CHS653	PR	OCESS EQUIPMENT	PCR	0	0	3	3	3		
		DESIGNS								
Pre-requis	ites		Course Asses		•	ntinuous (CT), mid-te	rm		
			(MT) and end	d assessme	nt (EA))					
Heat Trans	sfer		Viva-Voce							
Course		CO1: Ability to desi	: Ability to design Evaporator and techno-economic evaluation							
Outcomes		CO2: Ability to design								
Topics		1. Design of Multiple Effects Evaporator and techno-economic evaluation.								
Covered		2. Selection of ma	terial Design o	f Shell and	tube heat	exchanger	[36 hrs]		
Text Book	s,	Suggested Text Boo	ks:							
and/or		1. Process Heat Tra	nsfer by Kern							
reference		2. Coulson & Richa	rdson's Chemi	cal Engine	ering Desig	gn (Vol 6)				
material		3. Process Equipme	ent Design by I	loyd E. Bro	ownell & E	dwin H. You	ıng			
		4. Process Equipme		M. V. Joshi						
		Suggested Reference								
		2. Introduction to Chemical Equipment Design: Mechanical Aspects by B. C.								
		Bhattacharya								
		3. Plant Design and Timmerhaus	d Economics fo	or Chemica	al Enginee	rs by M.S. I	Peters an	d K.D.		
	4. Chemical Process Equipment: Selection and Design by James R. Couper.									

CURRICULUM AND SYLLABUS FOR DUAL DEGREE IN CHEMICAL ENGINEERING

2023

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1		1							
CO2	3	2	1		1							

Correlation levels 1, 2 or 3 as defined below:

Sixth (6th) Semester Department Electives

Course	Title of the	Program	Tota	al Number c	of contact ho	urs	Credit	
Code	course	Core	Lecture	Tutorial	Practical	Total		
		(PCR) /	(L)	(T)	(P)	Hours		
		Electives				(H)		
		(PEL)						
	CFD	PEL	3	0	0	3	3	
CHE610	APPLICATIONS							
CHEGIO	IN CHEMICAL							
	ENGINEERING							
Pre-requisit	es	Course Asse	essment me	thods (Cont	inuous (CT) a	nd end		
		assessment	t (EA))					
Basics of Flu	uid Mechanics,	CT+MT+EA						
Transport P	henomena,							
Numerical I	Methods							
							_	

Course Outcomes

- CO1: To learn basics of continuum based modelling and simulations; its area of applications and limitations.
- CO2: To learn different discretization methods of continuum based governing equations.
- CO3: To learn different steps of CFD simulations.
- CO4: To learn the use of CFD techniques in realistic problems.

Topics Covered

Module I:

Introduction: Illustration of the CFD approach, CFD as an engineering analysis tool, Review of governing equations, Modelling in engineering, Partial differential equations- Parabolic, Hyperbolic and Elliptic equation, CFD application in Chemical Engineering, CFD software packages and tools.

[5 hrs]

Module II:

Principles of Solution of the Governing Equations: Finite difference, Finite volume and Finite Element Methods, Convergence, Consistency, Error and Stability, Accuracy, Boundary conditions, CFD model formulation.

[8 hrs]

Module III:

Mesh generation: Overview of mesh generation, Structured and Unstructured mesh, Guideline on mesh quality and design, Mesh refinement and adaptation.

[4 hrs]

Module IV:

Solution Algorithms: Discretization schemes for pressure, momentum and energy equations - Explicit and implicit Schemes, First order upwind scheme, second order upwind scheme, QUICK scheme, SIMPLE, SIMPLER and MAC algorithm, pressure-velocity coupling algorithms, velocity-stream function approach, solution of Navier-Stokes equations.

[15 hrs]

Module V:

CFD Solution Procedure: Problem setup - creation of geometry, mesh generation,

	selection of physics and fluid properties, initialization, solution control and convergence monitoring, results reports and visualization. [5 hrs] Module VI: Case Studies: Benchmarking, validation, Simulation of CFD problems by use of general								
	CFD software, Simulation of coupled heat, mass and momentum transfer problem. [5 hrs]								
Text	Suggested Text Books:								
Books,	1. Numerical heat transfer and fluid flow by S.V. Patankar, Hemisphere Publishing								
and/or	Corporation, 1980.								
reference	2.Introduction to Computational Fluid Dynamics by Anil W. Date, Cambridge								
material	University Press, 1st Edition, 2005.								
	3. P.S. Ghosdastidar, Computer Simulation of Flow and Heat Transfer, Tata McGraw-								
	Hill (1998).								
	Suggested Reference Books:								
	1. Muralidhar, K.,and Sundararajan, T. Computational Fluid Flow and Heat Transfer,								
	Narosa Publishing. House (1995).								
	2. Computational Fluid Dynamics and Heat Transfer by P S Ghosdastidar (Publisher:								
	Cengage Learning India)								
	3. Ranade, V.V., Computational flow modeling for chemical reactor engineering,								
	Academic Press (2002).								

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	1	2	2	3	2	2	2	1	2	2	1
CO2	3	2	3	2	3	1	1	2	1	2	2	2
CO3	3	1	3	2	2	2	1	2	2	1	3	2
CO4	3	2	3	1	2	1	1	3	2	2	3	2

Correlation levels 1, 2 or 3 as defined below:

	Department of Chemical Engineering									
Course	Title of the	Program	Total Nun	nber of contac	t hours					
Code	course	Core	Credit							
		(PCR) /	(L)	(T)	(P)	Hours				
		Electives	tives							
		(PEL)								
CHE 611	COMBUSTION	PEL	3	3 0 0 3 3						
	ENGINEERING									
Pre-requisi	ites:			Course Assessment methods (Continuous (CT),						
				Midterm (MT) and end assessment (EA))						
Process cal	lculation, Material a	nd energy ba	alance,	CT+MT+EA						
Engg. Math	nematics, ODE, PDE,									
techniques	, modelling simulati	on with com	puting							

CURRICULUM AND SYLLABUS FOR DUAL DEGREE IN CHEMICAL ENGINEERING 2023 skill using c and Matlab program CO1: Clean coal technologies, coal bed methane blending of biomass with coal. Course Outcomes CO2: Mass and energy balance during combustion of solid, liquid and gaseous fuel. CO3: Reaction kinetics and mechanism of Pyrolysis, Combustion and gasification. • CO4: Burner design for different industrial application. Module I: **Topics** Covered Properties of solid liquid and gaseous fuels Classification, Composition, Calorific Values, Lower and higher heating values, ASTM test techniques of solid, liquid and gaseous fuels. Gasification of coal -Coal gasification technologies, chemical reactions, process conditions, design of gasification equipment. Underground coal gasification technology, process route. Clean coal Technologies: What is clean coal technology? Principle and objectives. Oxyfuel combustion, Biochar, Carbon capture and storage, Carbon sequestration, Kyoto Protocol, Mitigation of global warming, Refined coal, Coal bed methane deposits, CBM recovery through microporous network, Primary method-Dewatering process, Secondary method (Carbon dioxide [24 hrs.] injection technique). Module II: Stoichiometry of combustion -Chemical equations, Mass and energy balance of solid liquid and gaseous fuel combustion, concept of mixture fraction and equivalence ratio, problems on Fuel efficiency, excess air ratio and draft. Gas analyzers - Orsat and modern gas analyzers [7 hrs.] Module III: Combustion of liquid and gaseous fuels, Theory of diffusion flame, development diffusion flame equations and its solution technique, length of diffusion flame, chemical properties of diffusion flame & Premixed flame and its nature. Burner design for liquid and gaseous fuel, Types of Burners, design parameters and problems.[7 hrs.] **Module IV:** Combustion of solid fuels, Stages of combustion- drying, devolatilization, volatile combustion, combustion of residual char, Pulverized coal combustion, Combustion in fluidized bed system, burning rate in fluidized bed, factors affecting combustion efficiency. Combustion in bubbling fluidized bed boilers Combustion mechanism dense phase and lean phase concept and mass and energy balance, Recirculation of fly ash, effect of design parameters on combustion efficiency. Single particle combustion modelling-Single particle combustion modelling using volume reaction model, reaction mechanism

Text Books, and/or reference material

Suggested Text Books:

- 1. Combustion and Fuel Technology, A.K.Saha
- 2. Combustion and gasification in Fluidized bed, PrabirBasu, Taylor & Francis

medium. Excremental technique in TG/DTA and drop tube furnace.

Suggested Reference Books:

Tutorial and class test [5 hrs.]

1. Fundamentals of Combustion Engineering by Achintya Mukhopadhyay and Swarnendu Sen

and role of pore surface area. Heat and species transport equation in porous

[24 hrs.]

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
COs												2
CO1	3		3		3					1	3	1
CO2	3	1	1		3			2				
CO3	3		3		3					1	3	1
CO4	1	3	3		3		1		1		3	

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

		Departme	nt of Chemi	cal Engineer	ring		_				
Course	Title of the course	Program	Total Num	ber of conta	act hours		Credit				
Code		Core (PCR)	Lecture	Tutorial	Practical	Total					
		/ Electives (PEL)	(L)	(T)	(P)	Hours					
CHE612	PROCESS	PEL	3	0	0	3	3				
	MODELLING AND SIMULATION										
Pre-requ	isites: Process calcula	ation, Engg.	Course Assessment methods (Continuous (CT), Midterm								
Math I-II	I		(MT) and e	end assessm	ient (EA))						
			CT+MT+EA	4							
Course	• CO1: Unders	standing the	principle o	fmass, ene	rgy and mor	mentum con	servation				
Outcome	e equations.										
	CO2: Concept	ot of steady st	ate and uns	teady state	model equat	ions					
	CO3: Numeri	cal technique	s to solve A	lgebraic, OD	E and PDE						
	CO4: Solution of various model equations and graphical presentation										
Topics	Module I:										
Covered	Introduction to				•	mpirical rela	· · · · · · · · · · · · · · · · · · ·				
	experimentation	n, data inter _l	oretation, c	orrelation a	and mathema	atical modell	ing using				
	example										
	Model Developr	•									
	Dimensional An										
	up concept, St	•	•		•	•					
	relationships, D				•	•					
	and Distributed	Parameter -	Stirred tani	k and plug i	now models,	Linear and r	ion-iineai				
	models					-1	L:				
	Conservation p										
	Modelling of fe	• •		•							
	Double pipe he	at exchanger	, Gas-iiquid	ansorbrion	column, CS1	ה, ממננוו ופמי	ctor, Plug				
	now reactor.	[18 hrs.]									
	Module II:	Module II:									
	Development of	of dunamic	madal Inn		مند امامممد						

	parameters, numerical integration, Linear models and deviation variables, linearization of non-linear models, System with one state variables, one input. State space model, Heated mixing tank, Isothermal CSTR, Non-isothermal CSTR with 2 nd order chemical reaction, linearized
	model for the system and state space representation, Stability analysis and Eigen
	values. Model development of Pyrolysis, Combustion, Gasification process of coal and
	biomass and comprehensive modellingin TGDA, Isothermal mass loss Apparatus.
	[12 hrs.]
	Module III:
	Specialized Modeling for distributed parameter system: Distributed parameter system
	and model equations, the general conservation equation and interpretation of
	individual terms, Detail derivation of Finite Volume Method (FVM) and its application
	to steady state diffusive, convective and convective-diffusive problem. Extensions of
	the same for unsteady state operation, Presence of non-linear reaction terms, radiation
	term and linearization technique. Solution ofmodel equations. [14hrs.]
	Tutorial and class test [14 hrs.]
Text	Suggested Text Books:
Books,	1. Lyuben, W.L, Process Modelling, Simulation and Control, McGraw-Hill, N.Y. 1990.
and/or	Suggested Reference books:
reference	1. Patankar, S. V., 'Numerical fluid flow and heat transfer', 1980, Hemisphere
material	

ואיייי	JB O.	00 1000		••••	411411	<u> </u>						
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	2	2	2	2	2	1	1	2	1	2	2	1
CO2	3	3	3	2	3	2	1	3	1	3	3	1
CO3	3	3	3	2	3	2	1	3	1	3	3	1
CO4	3	3	3	2	3	2	1	3	1	3	3	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

		Departme	ent of Chem	ical Enginee	ring					
Course	Title of the	Program		ber of conta			Credit			
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total	1			
		/ Electives	(L)	(T)	(P)	Hours				
		(PEL)	(-/	(' '	(.)					
CHE613	TREATMENT	PEL	3	0	0	3	3			
	AND									
	MANAGEMENT									
	OF WATER									
	RESOURCES									
Pre-requ	isites:	1	Course Ass	sessment m	ethods (Cont	inuous (CT), N	Midterm			
			(MT) and end assessment (EA))							
			CT+MT+EA							
Course	CO1: Ability to a	ssess issues c	of water qua	litv. guantit	v. access and	managemen	t			
Outcome										
	CO3: Enhancing									
Topics	Module-1	,			•					
Covered	World-wide tem	poral and spa	atial variatio	on of water	resources; W	'HO standard	s for safe			
	potable water;									
	Act (India); Deg	radation wat	er resource	es (Groundy	vater, surface	e water): sou	irces and			
	major classes of	of contamina	ints; Water	resources	managemen	t approache	s; Water			
	Footprint in Ag	Footprint in Agriculture; Climate changes and challenges. Ethics and compliance of								
	regulations.									
							14Hr			
	Module-2									
	Chemical, Biolog	•			-	•				
	Membrane-base	•		_		- .				
	Treatment. Prin		, operation	, case studie	es and Techn	o-economic 1	feasibility			
	analysis of the to	echnologies.					4.4.11			
	Module-3						14 Hr			
	Industry-specific	troatmont o	of wastowat	or: Dulp and	d nanor indu	stry: Loathor	inductry			
	Dairy industry;			•	• •	• •	• •			
	treatment with		• •		• •	•				
	metal value from			Jacii, Ciosec	i loop treati	nent and rec	Lovery of			
	metal value non	ii various iiiut	astrics.				14Hr			
Text	Suggested Text I	Books:					7-7111			
Books,	1. Industrial W		nent Proce	ss Technol	ngv. Parimal	l Pal. Butte	r-Worth			
and/or	Heinemann an I									
referenc	Suggested Refer	•		-,	-, , OO/(<u>-</u>					
e	1. Groundwater		nediation: T	reatment T	echnology ar	nd Scale Up.	Parimal			
material	Pal, Elsevier Scie				01 %.	137				
	2. Membrane-ba		ogies for En	vironmental	Pollution Co	ntrol, Parima	l Pal,			
	Elsevier Science		-			*	•			
	3. Metal Value R	ecovery from	n Industrial \	Waste Using	Advanced Ph	nysicochemic	al			
	Treatment Tech	•		_		•				

CURRICULUM AND SYLLABUS FOR DUAL DEGREE IN CHEMICAL ENGINEERING

2023

Chakrabortty. Elsevier Science 2024.

4. Waste Treatment and Disposal, Eddy & Disposal, Eddy & E

Mapping of CO (Course Outcome) and PO (Programme Outcome)

		•										
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	2	2	2	2	2	1	1	2	1	2	2	1
CO2	3	3	3	2	3	2	1	3	1	3	3	1
CO3	3	3	3	2	3	2	1	3	1	3	3	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

SEVENTH SEMESTER

	<u>SEVENTH SEIVIESTER</u>									
	Department of Chemical Engineering									
Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credi			
Code		Core	Lectur	Tutoria	Practica	Total	t			
		(PCR) /	e (L)	I (T)	I (P)	Hour				
		Electives				S				
		(PEL)								
MSC731	PRINCIPLES OF	PCR	3	0	0	3	3			
WI3C731	MANAGEMENT	PCK	3	U	U	3	3			
Pre-requisi	tes	Course Assessment methods (Continuous assessment (CA)								
		and end ass	sessment (EA))						
		CA+MT+EA								
Course	• CO1: To make b	udding engin	eers awar	e of vario	ous manage	ement fu	unctions			
Outcomes	required for any or	ganization								
	● CO2: To impart k	nowledge on	various	tools and	techniques	annlied	hy the			

- CO2: To impart knowledge on various tools and techniques applied by the executives of an organization
- CO3: To make potential engineers aware of managerial function so that it would help for their professional career
- CO4: To impart knowledge on organizational activities operational and strategic both in nature
- CO5: To impart knowledge on each functional area of management like Marketing, Finance, Behavioral Science, Quantitative Techniques and Decision Science

Topics Covered

Module I:

Management Functions and Business Environment: Business environment- macro, Business environment -micro; Porter's five forces, Management functions —overview, Different levels and roles of management, Planning- Steps, Planning and environmental analysis with SWOT, Application of BCG matrix in organization [8 hrs.]

Module II:

Quantitative tools and techniques used in management: Forecasting techniques, Decision analysis, PERT & CPM as controlling technique [7 hrs.]

Module III:

Creating and delivering superior customer value: Basic understanding of marketing, Consumer behavior-fundamentals, Segmentation, Targeting & Positioning, Product Life cycle. [8 hrs.]

Module IV:

Behavioral management of individual: Motivation, Leadership, Perception, Learning.
[8 hrs.]

Module V:

Finance and Accounting: Basics of Financial management of an organization, Preparation of Final Accounts, Analysis of Financial statements, Cost Volume Profit (CVP) Analysis, An overview of financial market with special reference to India.

[12 hrs.]

Text	Suggested Text Books:
Books,	1. Financial Management, 11th Edition, I M Pandey, Vikas Publishing House.
and/or	2. Marketing Management 15th Edition, Philip Kotler and Kelvin Keller, Pearson
referenc	India
е	3. Management Principles, Processes and practice, first edition, Anil Bhat and Arya
material	Kumar, Oxford Higher education
	Suggested Reference Books:
	1. Organizational Behavior,13 th edition, Stephen P Robbins, Pearson Prentice hall
	India
	2. Operations Management, 7th edition (Quality control, Forecasting), Buffa &
	Sarin, Willey

	P P 8 -			,		1 - 6 - 5			,			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1									3	2	2	
CO2				2					2	2		
CO3				2					3	2		
CO4							1		3			
CO5				2					2	2	2	

Correlation levels 1, 2 or 3 as defined below:

	Department of Chemical Engineering								
Course	Title of the course	Program Core	Total	Number o	f contact ho	ours	Credit		
Code		(PCR)/	Lecture	Tutorial	Practical	Total			
		Electives	(L)	(T)	(P)	Hours			
		(PEL)							
CHC701	TRANSPORT	PCR	3	1	0	4	4		
	PHENOMENA								
Pre-requisites Course Assessment methods (Continuous (CT) and end									
CHC301, CH	IC303, CHC401,	assessment (EA))							
CHC403, CH	IC501, CHC502								
		CT+MT+EA							
Course	CO1: To create a	n understanding (on universa	al approach	of transpo	rt			
Outcomes	Phenomena and fu	ndamental transp	ort proces	sses like m	ass, mome	ntum and	i		
(CO)	energy.								
	• CO2: To give a	n understanding	on shell I	balance te	chnique, se	tting of			
	boundary condition	ns etc. for differe	nt geomet	ry of a syste	em				
	 CO3: To develop 	NSE, equation o	of continuit	y, equatio	n of energy	etc. fron	n the		
	fundamental concept of conservation								
	CO4: To solve problems on mass, momentum and energy transport using shell								
	balance technique	s and basic transp	ort equati	ons					

Topics Module I Covered Transport Phenomena: Basic concepts, fundamental transport Processes and the irrelation, transport properties, measurement of properties, boundary conditions etc. [6hrs.] Module II: Momentum transport phenomena: Shell balance technique, Derivation momentum, velocity, shear force. in rectangular, cylindrical and spherical coordinate systems by using shell balance, Equation of continuity and change (mass, momentum & energy), Navier stokes equation (NSE), Euler equation, application of NSE in rectangular, cylindrical and spherical coordinate systems. Module III: Flow of fluids in thin films, parallel plates, circular tubes and annulus, adjacent flow of two immiscible fluids, couette flow, rotating surface flow and radial flow, flow near a wall suddenly set in motion.[10 hrs.] Module IV: Energy transport: Basic energy transport equations, derivation using elementary volume concept and conservation theorems in different coordinate system, analysis of energy transport using hell balance techniques and basic transport equations. [8 hrs.] Module V: Conduction with energy sources in fixed bed catalytic reactors and in cooling fins, forced convection circular tubes, natural convection from a heated plate and unsteady state conduction of in the slab [10 hrs.] Module VI: Mass transport: Types of fluxes and their relation, continuity equation for a binary mixture, boundary conditions, analysis of mass transport using shell balance techniques and equation of continuity for different coordinate systems, steady and unsteady state systems, diffusion in porous catalyst with and without chemical reaction, diffusion in falling liquid film, turbulent mass flux, interphasemass [12hrs.] transport Suggested Text Books: TextBook 1. Transport Phenomena by Bird, Stewart & Lightfoot, Wiley, 2nd Edition, 2010. S,

Mapping of CO (Course Outcome) and PO (Programme Outcome)

Chemical Engineering Series, Brodkey Publishing, 2003

	8 5. 55	1000.0		,o, a	• (6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		,				
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	1	1		1	1							1
CO2		2	2	2	2							3
CO3			2	2	3						3	3
CO4		3	3	3	3						3	3

2. Introduction to Transport Phenomena: Momentum, Heat and Mass by Bodh Raj,

1.TransportPhenomena: A Unified Approach by Brodkey & Hershey, McGraw- Hill

Correlation levels1, 2 or 3 as defined below:

PHI Learning, 2012

Suggested Reference Books:

and/or

reference

material

	Department of Chemical Engineering									
Course	Title of the course	Program Core	Total	Number o	f contact ho	urs	Credit			
Code		(PCR)/	Lecture	Tutorial	Practical	Total				
		Electives	(L)	(T)	(P)	Hours				
		(PEL)								
	ADVANCED	PCR	3	0	2	4	4			
CH1001	PROCESS DYNAMICS									
	AND CONTROL									
Pre-requisit	tes	Course Assessment methods (Continuous (CT)and end								
		assessment (EA))								
		CT+MT+EA								

Course Outcomes (CO)

- Develop advanced mathematical models for dynamic systems, including multivariable, nonlinear, and distributed parameter systems.
- Apply optimization and real-time control techniques for improving chemical process efficiency and performance.
- Design and implement robust and intelligent control strategies for solving complex industrial problems.
- Analyze and integrate advanced control systems with existing instrumentation for automated chemical industries.

Topics Covered

Module 1: Advanced Process Dynamics and Modeling (14 Hours)

- Dynamics of multi-variable systems: Interaction and decoupling.
- Modeling of distributed parameter systems (DPS).
- State-space representation and solutions to state equations.
- Nonlinear dynamics: Phase plane analysis, limit cycles, bifurcation, and chaos theory.
- System identification techniques: Linear and nonlinear model identification.

Module 2: Optimization in Process Control (14 Hours)

- Optimal control theory: Principle of optimality, dynamic programming, and calculus of variations.
- Linear Quadratic Regulators (LQR) and Linear Quadratic Gaussian (LQG) control.
- Model Predictive Control (MPC): Concept, formulation, constraints handling, and industrial case studies.
- Real-time optimization and applications in chemical processes.
- Introduction to process data analytics and optimization integration.

Module 3: Nonlinear and Robust Control Strategies (14 Hours)

- Nonlinear control systems: Feedback linearization, sliding mode control, and Lyapunov stability.
- Adaptive control: Self-tuning regulators and model-reference adaptive control.
- Robust control: H-infinity control, structured singular value analysis, and applications in uncertain systems.
- Process fault detection and diagnosis using advanced control systems.

Module 4: Intelligent Control Systems and Applications (14 Hours)

- Artificial intelligence in process control: Neural networks, fuzzy logic, and hybrid systems.
- Reinforcement learning and control.

	•	Integration of advanced control systems with SCADA and distributed control systems (DCS).
	•	Applications in chemical processes such as reactors, distillation columns, energy
		systems, and bioprocess control.
TextBook	Text B	ooks
S,	1.	Seborg, D. E., Edgar, T. F., Mellichamp, D. A., & Doyle, F. J. Process Dynamics and
and/or		Control. Wiley, 4th Edition, 2023.
reference	2.	Ogunnaike, B. A., & Ray, W. H. Process Dynamics, Modeling, and Control. Oxford
material		University Press, 1st Edition, 1994.
	Refere	ence Books
	1.	Skogestad, S., & Postlethwaite, I. Multivariable Feedback Control: Analysis and
		Design. Wiley, 2nd Edition, 2005.
	2.	Bequette, B. W. Process Dynamics: Modeling, Analysis, and Simulation. Prentice
		Hall, 1st Edition, 1998.
	3.	Maciejowski, J. M. Predictive Control with Constraints . Pearson Education, 2002.
	4.	Khalil, H. K. Nonlinear Systems . Prentice Hall, 3rd Edition, 2002.

COs	PO1	PO2	PO3
CO1	3	2	3
CO2	3	3	3
CO3	3	2	3
CO4	3	2	3

Correlation levels1, 2 or 3 as defined below:

	Dep	artment of Chen	nical Engin	eering					
Course	Title of the course	Program Core			f contact ho	ours	Credit		
Code		(PCR)/	Lecture	Tutorial	Practical	Total			
		Electives	(L)	(T)	(P)	Hours			
		(PEL)							
	PROCESS	PCR	3	0	2	4	4		
CHS751	MODELLING AND								
CH3/31	SIMULATION								
	LABORATORY								
Pre-requisites		Course Assessme	Course Assessment methods (Continuous (CT)and end						
		assessment (EA))							
		CT+MT+EA							
Course	• CO1: To improve t	he skill of progra	mming wit	h numerica	al methods				
Outcomes	• CO2: To solv	e Chemical	Engg pro	oblems u	sing com	puters	(using		
(CO)	Matlab/Aspen/Ansys	latlab/Aspen/Ansys)							
Topics	Module I								
Covered	1. Arrays Operations, Loops in Matlab								
	2. Script and Functi	ons in Matlab							

	3. Plotting in Matlab							
	4. Truncation Error and Numerical error in Matlab							
	5. Numerical Differentiation and Integration using Matlab							
	Module II							
	Solving Linera/non-linear equations using Matlab							
	Solving set of linear equation							
	Solving ODEs in Matlab (RK/ODE45)							
	Module III							
	Intruduction to Matlab-Simulink							
	Tuning of PID controller using Simulink							
	Example cases using Simulink							
	Module IV							
	Introduction to Aspen-Plus							
	Property analysis using Aspen-Plus							
	Process Modelling and simulation using Aspen-Plus [36 hrs.]							
Text Books,	Suggested Text Books:							
and/or	1. Computational Techniques for Process Simulation and Analysis Using MATLAB,							
Reference	Niket S. Kaisare, CRC Press							
material	2. Teach Yourself the Basics of Aspen Plus, Ralph Schefflan, 2nd Edition, AIChE, Willey							
	Suggested Reference Books:							
	1. Introduction to Simulink: With Engineering Applications, by Steven T. Karris, Orchard							
	Pubns; 3rd edition							

	P0	77 77		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• • • • • •	- (· · · o						
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2	1	2				1		2	
CO2	3		2	1	2				1		2	

Correlation levels1, 2 or 3 as defined below:

2023

CURRICULUM AND SYLLABUS FOR DUAL DEGREE IN CHEMICAL ENGINEERING

Course	Title of the course	Program Core	Total Num	ber of con	tact hours		Credit			
Code		(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
CHS752	INDUSTRIAL		0	0	3	3	2			
	TRAINING /									
	INTERNSHIP and									
	SEMINAR									
Course Ou	Course Outcomes		CO1: Ability to understand all the Unit Operations and Unit Processes in real-life problem.							
		CO2: Knowledge sharing								
Topics Cov	ered	Industrial Training, Internship etc. 6 -8 weeks								
Text Books material	, and/or reference	NA								

Course	Title of the	Program	Total Nur	mber of contac	ct hours		Cr			
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total	ec			
		/ Electives (PEL)	(L)	(T)	(P)	Hours (H)	it			
CHE710	MULTIPHASE FLOW	PEL	3	0	0	3	3			
Pre-requis	ites	Course Asse (EA))	ssment met	hods (Continu	ious (CT) and ϵ	end assessn	nent			
transfer, tr	anics, heat ansport a, mathematical	CT+MT+EA								
Course Outcomes							s and			
Topics Covered	Module I: Fundamental co	•	•	•		time-avera	nging			
	volume/void fra flux; velocity ra flux; separated two-phase pre nuclear, therma	action; flow qu tio; slip; volum flow; Martine ssure drop; is	ality; super e and mass Ili paramet othermal	ficial velocitie -centered velo ers; two-phas and non-isoth	s; phase veloci ocity; homoger e multiplier a ermal flows;	ities; volum neous flow, nd correlation application	netri ; drif tions			
Module II: Flow patterns and transitions Flow patterns; identification and classification; flow pattern maps and transition in gas-liquid, solid-gas, solid-liquid, gas-solid-liquid flows; boiling channel; bubble column, fluid bed; trickle beds; prediction of holdup and pressure drop in different flow regimes.[6 hrs] Module III:										
		Numerical models and methods								
		•	Numerical models and methods Conservation equations for mass, momentum and energy for heat transfer and flow field in multiphase flow; homogeneous and separated flow model; drift flux model;							

Conservation equations for mass, momentum and energy for heat transfer and flow field in multiphase flow; homogeneous and separated flow model; drift flux model; two-fluid models; Eulerian and Lagrangian methods; numerical methods for solutions; closure equations for fluid-wall and interfacial transports of heat and momentum; drift flux and slip correlations for bubbly, slug, annular and stratified flows. [12 hrs]

Module IV:

Dynamics of bubble, drop and solid particle

Growth of bubble and drop; terminal velocity of bubble, drop and particle; pinch-off; contact line and triple contact lines; coalescence; breakup and collapse; deformation of bubbles and particles; flow around a spherical particle; flow through porous medium. [8 hrs]

	Module V:
	Measurement methods in multiphase flow:
	Two-phase pressure drop, void fraction, phase indication; phase distributions; phase
	velocities; anemometry; velocimetry; densitometry; optical methods; electrical
	methods.
	[10 hrs]
Text Books,	Suggested Text Books:
and/or	1. Yadigraoglu, G., Hewitt, G. F., Introduction to Multiphase flow – Basic Concepts,
reference	Applications and Modeling. Springer, 2018.
material	2. Wallis, G. B., "One Dimensional Two Phase Flow", McGraw Hill Book Co., 1969.
- Tridectran	3. Collier, J. G. and Thome, J. R., Convective Boiling and Condensation, 3rd ed.,
	Oxford University Press
	· ·
	4. Ghiaasiaan, S. M., Two-Phase flow, Boiling, and Condensation, Cambridge
	University Press, 2007.
	5. Crowe, C. T., Sommerfeld, M. and Tsuji, Y., Multiphase Flows with Droplets and
	Particles, CRC Press, 1998.
	6. Govier, G. W. and Aziz. K., "The Flow of Complex Mixture in Pipes", Van Nostrand
	Reinhold, New York, 1972.
	7. Prosperetti, A., Tryggvason, G., Computational Methods for Multiphase Flow,
	Cambridge University Press, 2007
	Suggested Reference Books:
	1. G. Hetsroni, Handbook of Multiphase Systems, Mcgraw-Hill Book Company, 1982.

<u> </u>				,	<u> </u>							
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3		2	1	2				1		2	
CO2	3		2	1	2				1		2	
CO3	3		2	1	2				1		2	
CO4	3		2	1	2				1		2	

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tot	al Number c	of contact hou	urs	Credit		
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total			
		/ Electives	(L)	(T)	(P)	Hours			
		(PEL)				(H)			
CHE711	PINCH	PEL	3	0	0	3	3		
	TECHNOLOGY								
	FOR PROCESS								
	HEAT								
	INTEGRATION								
Pre-requis	ites	Course Asses	Course Assessment methods (Continuous (CT) and end assessment						
		(EA))							
Heat Trans	sfer	CT+MT+EA							

Course Outcomes **Topics** Covered

- CO1: Acquire an idea to optimize the process heat recovery and reducing the external utility loads.
- CO2: To achieve financial saving by constructing the best process heat integration.

Module I:

Introduction to process Intensification and Process Integration (PI). Areas of application and techniques available for PI, onion diagram. Overview of Pinch Technology: Introduction, Basic concepts, How it is different from energy auditing, Roles of thermodynamic laws, problems addressed by Pinch Technology.

Key steps of Pinch Technology: Concept of ΔT_{min} , Data Extraction, Targeting, Designing, Optimization-Supertargeting

Basic Elements of Pinch Technology: Grid Diagram, Composite curve, Problem Table Algorithm, Grand Composite Curve.

Targeting of Heat Exchanger Network: Energy Targeting, Area Targeting, Number of units targeting, Shell Targeting and Cost targeting.

[12 hrs]

Module II:

Designing of HEN: Pinch Design Methods, Heuristic rules, stream splitting, and design of maximum energy recovery (MER). Use of multiple utilities and concept of utility pinches, Design for multiple utilities pinches, Concept of threshold problems and design strategy. Network evolution and evaluation-identification of loops and paths, loop breaking and path relaxation.

[12 hrs]

Module III:

Design tools to achieve targets, Driving force plot, remaining problem analysis, diverse pinch concepts, MCp ratio heuristics. Targeting and designing of HENs with different ΔT_{min} values, Variation of cost of utility, fixed cost, TAC, number of shells and total area with ΔT_{min} Capital-Energy trade-offs. Process modifications-Plus/Minus principles, Heat Engines and appropriate placement of heat engines relative to pinch. Heat pumps, Appropriate placement of heat pumps relative to pinch. Steam Rankin Cycle design, Gas turbine cycle design, Integration of Steam and Gas turbine with process. Refrigeration systems, Stand alone and integrated evaporators. Heat integrations and proper placement of Reactors for batch Processes as well as continuous processes.

[12 hrs]

Module IV:

Case studies on heat integration by pinch technology

[6 hrs]

Text Books, and/or reference material

Suggested Text Books:

- 1. Ian C. Kemp, Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy, 2nd Edition, ISBN: 9780750682602, Butterworth-Heinemann, 2016.
- 2. Linnhoff B., Townsend D. W., Boland D, Hewitt G. F., Thomas B. E. A., Guy A. R., and Marsland R. H.; "A User Guide on Process Integration for the Efficient Uses of Energy", Inst. of Chemical Engineers.

Suggested Reference Books:

- 1. Shenoy U. V.; "Heat Exchanger Network Synthesis", Gulf Publishing Co.
- 2. Smith R.; "Chemical Process Design", McGraw-Hill.

	70	77 77		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• • • • •	- (6						
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2	1	2				1		2	
CO2	3		2	1	2				1		2	

Correlation levels1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3:Substantial(High)

Course	Title of the course	Program	Tot	al Number o	of contact ho	urs	Credit
Code		Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives				(H)	
		(PEL)					
CHE712	NANOTECHNOLOG Y	PEL	3	1	0	4	4
Pre-requis	sites	Course Ass	essment me	thods (Cont	tinuous (CT) a	and end	
		assessment	t (EA))				
	wledge of Chemistry, nd Mathematics	CE+EA					
Course	CO1: Acquire	the concept o	f nanoscien	ce and nanc	technology a	at the basi	c level
Outcomes	to apply for differ	rent application	on.				
	CO2: Acquire 1	the concept o	f synthesis a	and characte	erization of n	anomater	ials.
	• CO3: Acquire	the idea how	to apply na	anotechnolo	gy in differe	nt fields (catalysis,
	energy and enviro	onment) for b	etter efficie	ncy.		•	•
Topics	Module I:						
Covered	Introduction, Hist	ory of Nanom	naterials syr	thesis appr	oach of nand	omaterials	, various
	kind of nanostruct	tures.					
							[10 hrs]
	Module II:						
	Synthesis of nan Methods.	omaterials: F	hysical Me	thods, Che	mical Metho	ods and E	Biological
	Properties of Nan	nomaterials: N	Леchanical,	Structural,	Thermal, Ele	ctrical and	d Optical
	properties.						
							[11 hrs]
	Module III:						
	Characterization 1	techniques of	f nanomate	rials: Spect	roscopy, XRE	D, BET, TO	SA, SEM,
	TEM and XPS.						
							[11 hrs]
	Module IV:						
	Application of the	nanomateria	ls in differe	nt fields.			
	Nanolithography,	Nanocompos	ites.				
	Nanoparticles as o	catalyst					
	Nanoparticles in e	nergy and en	vironment a	application.			
	Nanoparticles in b	iomedical ap	plication.				[10 hrs]

Text Books
and/or
reference
material

Suggested Text Books:

- 1. Dieter Vollath, Nanomaterials: An introduction to synthesis, properties and application, Wiley-VCH Verlag GmbH & Co. Weinheim, Germany, 2008.
- 2. CNR Rao, PJ Thomas, GU Kulkarni, Nanocrystals: Synthesis, Properties and Applications, Springer-Verlag Berlin Heidelberg 2007.
- 3. T. Pradeep, Nano: The Essentials, Understanding Nanoscience and Nano Technology, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2007.

Suggested Reference Books:

- 1. Goddard III, WA, Brenner, DW, Lyshevski, SE, Iafrate, GJ. Handbook of nanoscience, Engineering and Technology, 2nd Edition, CRC Press.
- 2. Nanotechnology: Principles & Practices; Sulabh K. Kulkarni, Capital Publishing Company, Kolkata
- 3. In some cases research articles.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

					<u> </u>							
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3		2	1	2				1		2	
CO2	3		2	1	2				1		2	
CO3	3		2	1	2				1		2	
CO4	3		2	1	2				1		2	

Correlation levels1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

Course	Title of the course	Program	Tot	al Number o	of contact ho	urs	Credit						
Code		Core	Lecture	Tutorial	Practical	Total							
		(PCR) /	(L)	(T)	(P)	Hours							
		Electives				(H)							
		(PEL)											
CHE713	POLYMER	PEL	3	1	0	4	4						
CHE/13	TECHNOLOGY												
Pre-requis	sites	Course Ass	essment me	thods (Cont	tinuous (CT) a	and end							
		assessment	t (EA))										
Basics of C	rganic Chemistry,	CE+MT+EA											
Chemical F	Reaction Engineering												
Course	 Understand th 	e fundament	als of polym	ner science,	including stru	ucture, pro	perties,						
Outcomes	and molecular	weight deter	mination.										
	 Analyze polym 	erization tecl	nniques and	processing	methods for	industrial							
	applications.												
	 Evaluate the a 	pplications ar	nd advancer	nents in pol	ymers, includ	ling sustai	nable						
	and biodegrad	and biodegradable options.											
Topics	Module 1: Fundar	Module 1: Fundamentals of Polymer Science (14 Hours)											
Covered	Introduction	on to polymer	s: Classifica	tion, structu	ire, and prop	erties.							
	 Molecular 	Molecular weight and its determination: Number-average, weight-average,											
	and viscos	ity-average m	olecular we	ights.									

- Thermal properties: Glass transition temperature (Tg) and melting point (Tm).
- Polymer rheology and viscoelastic behavior.

Module 2: Polymerization Techniques and Processing (14 Hours)

- Mechanisms of polymerization: Addition (chain-growth) and condensation (step-growth) polymerization.
- Polymerization methods: Bulk, solution, suspension, and emulsion.
- Polymer processing techniques: Extrusion, injection molding, blow molding, and thermoforming.
- Role of catalysts in polymerization: Ziegler-Natta and metallocene catalysts.

Module 3: Industrial Applications and Advances in Polymers (14 Hours)

- Commodity polymers (e.g., polyethylene, polypropylene) and engineering polymers (e.g., nylon, polycarbonate).
- Biodegradable and biopolymers: PLA, PHA, and applications in sustainable industries.
- Polymers in advanced applications: Conducting polymers, polymer composites, and smart polymers.
- Environmental aspects: Recycling and sustainability of polymer materials.

Text Books, and/or reference material

Textbooks

- 1. Fried, J. R. Polymer Science and Technology. Prentice Hall, 3rd Edition, 2014.
- 2. Billmeyer, F. W. **Textbook of Polymer Science**. Wiley, 3rd Edition, 1984.

Reference Books

- 1. Odian, G. **Principles of Polymerization**. Wiley, 4th Edition, 2004.
- 2. Sperling, L. H. **Introduction to Physical Polymer Science**. Wiley, 4th Edition, 2005.
- 3. Gowariker, V. R., Viswanathan, N. V., & Jayadev Sreedhar. **Polymer Science**. New Age International, 2015.
- 4. Stevens, M. P. **Polymer Chemistry: An Introduction**. Oxford University Press, 3rd Edition, 1999.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	-	-	2	2	-	-	-	-	2
CO2	3	3	3	2	2	-	-	-	-	-	-	-
CO3	2	3	3	2	2	3	3	2	-	-	2	2

Correlation levels1, 2 or 3 as defined below:

Course	Title of the course	Program	Tot	al Number o	of contact ho	urs	Credit
Code		Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives				(H)	
		(PEL)					
	APPLIED	PEL	3	1	0	4	4
CHE720	MICROFLUIDICS IN						
	CHEMICAL						
	ENGINEERING						
Pre-requis	ites			ethods (Con	tinuous (CT) a	and end	
D ' C1		assessment	• • • • • • • • • • • • • • • • • • • •				
	Fluid Mechanics,	CE+MT+EA					
Thermody	Phenomena, and						
Course	Understand the stand the stand the stand the stand the stand the standard three standard three standards are standards as the standard are standards as the standards are standards as the standard are standard as the standard are standards as the standard are standa	 ha fundaman	tal principle	as and scali	ng laws gov	orning mid	rofluidi
Outcomes		ne runudinen	tai hiiicihie	zs anu SCall	ing laws gove	erring till	ionuldi
Julcomes		enart phonor	mona and	docian mi	crofluidic do	wicos for	variou
	Analyze trans chemical engines	-		uesign min	ronulaic de	vices ioi	variou
	Evaluate the	•		idies in che	mical biolo	gical and	onorm
	related processes		oi illiciollu	iuics iii che	ennical, biolo	gicai, aliu	energy
Topics	Module 1: Funda		icrofluidics	(14 Hours)			
Covered		on to microflu			tions and im	nortance	in
Covered		engineering.	naics. Conce	pts, applied	icions, and in	iportanec	
		vs and govern	ing equatio	ns at micros	cale: Navier-	Stokes ear	uations.
	_	nsion, and cap			care: Havier	otokes eq	aacioiis,
		regimes in mi	•		ow. slip flow	. and raref	ied gas
	dynamics.	=	or o or a river.	51 <u> </u>		, and raici	ica gas
	· ·	driven and ele	ctrokinetic 1	flows (e.g., e	electroosmos	is,	
	electropho			(0 /		,	
	Module 2: Microf	luidic Transpo	ort Phenom	ena (14 Ho	urs)		
		mass transfer		-	-		
	Diffusion-control	dominated pro	ocesses and	mixing stra	tegies in mic	rofluidics.	
	 Microfluid 	ic multiphase	flows: Drop	olets, bubble	es, and emuls	sions.	
	 Design and 	d operation of	microreact	ors for cher	nical process	es.	
	Module 3: Applic	ations of Mici	ofluidics in	Chemical E	ngineering (1	L4 Hours)	
	Microfluid	ic-based sepa	ration proc	esses (e.g., l	_ab-on-a-Chiր	o for chem	ical
	analysis).						
	 Applicatio 	ns in chemica	l synthesis,	catalysis, an	d energy sys	tems.	
	 Microfluid 	ics in biotech	nology: Cell	sorting, dia	gnostics, and	drug deliv	very.
	 Advances 	in microfluidio	fabrication	n techniques	: Lithography	y, soft litho	ography
	and 3D pri	nting.					
Text Book	·						
and/or	1. Tabeling, F				•		05.
reference	2. Nguyen, N		•			ons of	
material		lics . Artech Ho	ouse, 3rd Ed	lition, 2019.			
	Reference Books						
	1. Stone, H. A	4., & Kim, S. N	1icrofluidics	and Nanof	luidics: Theo	ry and Sel	ected

Applications. Cambridge University Press, 2010.

- 2. Whitesides, G. M., & Stroock, A. D. **Applications of Microfluidics in Chemistry and Biology**. Annual Reviews in Chemical and Biomolecular Engineering, 2001.
- 3. Kirby, B. J. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic **Devices**. Cambridge University Press, 2010.
- 4. Chakraborty, S. **Microfluidics and Microscale Transport Processes**. CRC Press, 2009.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	-	-	2	-	-	_	-	-	2
CO2	3	3	3	3	2	-	-	-	-	-	-	-
CO3	3	3	3	2	3	2	2	_	-	-	-	2

Correlation levels1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

Course	Title of the course	Program	Tota	al Number o	of contact ho	urs	Credit					
Code		Core	Lecture	Tutorial	Practical	Total						
		(PCR) /	(L)	(T)	(P)	Hours						
		Electives	()	()	, ,	(H)						
		(PEL)				, ,						
	WASTE	PEL	3	1	0	4	4					
CUEZZA	MANAGEMENT											
CHE721	AND RESOURCE											
	RECOVERY											
Pre-requis	sites	Course Asso	essment me	thods (Cont	tinuous (CT) a	and end						
		assessment	assessment (EA))									
	Environmental	CE+MT+EA										
	ng, Chemical Process											
Principles												
Course	Understand wa	_		-		_						
Outcomes	7 7											
	 Develop strat 	egies for re	source rec	overy and	implement	circular e	economy					
	concepts.											
Topics	Module 1: Fundar	mentals of Wa	aste Manag	ement (14 I	Hours)							
Covered		on to waste m	_	:: Types of w	aste (industr	ial, munic	ipal,					
	hazardous	, e-waste, etc	.).									
		Waste characterization: Physical, chemical, and biological properties.										
	=	Legislative framework and policies on waste management: Global and Indian										
	perspectiv											
	=	of waste man	agement: R	educe, Reus	e, Recycle (3	Rs), treatr	nent,					
	and dispos	and disposal.										

Module 2: Waste Treatment Technologies (14 Hours)

- Thermal treatment: Incineration, pyrolysis, and gasification.
- Biological treatment: Composting, anaerobic digestion, and bioremediation.
- Physical and chemical treatment: Sedimentation, filtration, coagulation, and advanced oxidation processes.
- Landfill design and leachate management.

Module 3: Resource Recovery and Circular Economy (14 Hours)

- Principles of resource recovery and circular economy.
- Recovery of energy from waste: Bioenergy, waste-to-energy processes, and RDF (Refuse-Derived Fuel).
- Material recovery: Metals, plastics, and critical minerals.
- Industrial symbiosis and integrated waste management for sustainable development.
- Case studies: Successful resource recovery projects worldwide.

Text Books, and/or reference material

Textbooks

- 1. Kreith, F., & Tchobanoglous, G. Handbook of Solid Waste Management. McGraw-Hill, 2nd Edition, 2002.
- 2. Agarwal, S. K. Waste Management: Pollution and Recovery. APH Publishing, 2005.

Reference Books

- 1. Bhatia, S. C. **Solid and Hazardous Waste Management**. Atlantic Publishers, 2021.
- 2. Christensen, T. H. **Solid Waste Technology and Management**. Wiley-Blackwell, 2011.
- 3. Velma, I., & Velmurugan, P. **Bioenergy Recovery from Waste**. CRC Press, 2020.
- 4. Matsuura, T. **Progress in Waste Management Research**. Nova Science Publishers. 2008.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

- 1-1- 0 -				<u> </u>								
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	2	-	3	2	2	-	-	-	2
CO2	3	2	3	3	2	3	3	-	-	-	-	-
CO3	3	3	3	3	3	3	3	3	2	-	-	2

Correlation levels1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: S

	Title of the course							
Course	Title of the course	Program		T	I		Credit	
Code		Core	Lecture	Tutorial	Practical	Total		
		(PCR) /	(L)	(T)	(P)	Hours		
		Electives				(H)		
		(PEL)						
	INNOVATION AND	PEL	3	1	0	4	4	
CHE722	ENTREPRENEURSHIP							
	IN CHEMICAL							
	PROCESSES							
Pre-requis	ites			thods (Cont	tinuous (CT) a	and end		
		assessment	: (EA))					
	wledge of Chemical	CE+MT+EA						
	ng Principles							
Course	Develop innovati	ive solutions f	for chemical	process cha	allenges and a	assess thei	r	
Outcomes	,							
	 Design business 	•						
	• Demonstrate entrepreneurial skills by formulating sustainable and impactful busine							
	models for chemica							
Topics	Module 1: Fundam							
Covered		ovation: Type	s of innovati	ion (product,	process, and	disruptive		
	innovation).							
	Role of creativity and problem-solving in innovation. Principles of entreprepayables Characteristics of entreprepayate entreprepayately.							
	• Principles of entrepreneurship: Characteristics of entrepreneurs, entrepreneurial mindset, and types of ventures.							
		nd evaluating		s in chemica	l processes			
		readiness level			-	1		
	commercializ			1				
	Module 2: Developi	ing and Mana	ging Innova	ative Chemi	cal Processes	s (14 Hour	rs)	
		lopment lifecy						
		of successful i		in chemical	engineering (e	e.g., green		
	· ·	ocess intensif						
		intellectual pr	roperty: Pate	ents, tradema	rks, and copy	rights in cl	hemical	
	engineering.	dala fan ahami	201	ومناه ما ممناه م	. Licansina i		aa amd	
		dels for chemi	cai process i	technologies	: Licensing, jo	omi ventur	es, and	
	start-ups. • Sustainable a	and socially rea	sponsible in	novation pra	ctices			
	Module 3: Entrepre	•	-	-				
		usiness plan: N				nd value		
	propositions.			,	- 3,			
	Financial pla	nning: Estima	tion of capit	al costs, fund	ding mechanis	sms, and ri	sk	
	management							
	_	ovative ideas to				_		
		nd opportuniti						
- ·	• Government policies, schemes, and incubation centers supporting entrepreneurship.							
	Text Books, Textbooks							
and/or	1. Hisrich, R. D., Peters, M. P., & Shepherd, D. A. Entrepreneurship . McGra Hill, 11th Edition, 2020.						Graw	
reference	· · · · · · · · · · · · · · · · · · ·	,	Introductio	n to Charri	icals from Di	lomoss II	/ilov	
material	2. Clark, J., & 2nd Edition		muroauctio	m w Chemi	icais ituili bi	iumass. W	ney,	
	2nd Edition, 2015.							

Reference Books

- 1. Drucker, P. F. Innovation and Entrepreneurship. HarperBusiness, 2006.
- 2. Osterwalder, A., & Pigneur, Y. Business Model Generation. Wiley, 2010.
- 3. Marr, B. **Data-Driven Business Models for Chemical Processes**. CRC Press, 2021.
- 4. Byers, T. H., Dorf, R. C., & Nelson, A. J. **Technology Ventures: From Idea to Enterprise**. McGraw Hill, 5th Edition, 2020.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	3	2	3	3	2	2	-	-	3
CO2	3	3	3	3	3	3	3	3	2	2	-	2
CO3	3	3	3	3	3	3	2	3	3	3	3	3

Correlation levels1, 2 or 3 as defined below:

		Dep	partment of Ch	emical Eng	ineering				
Course	Title	e of the course	Program	Total Nur	mber of co	ntact hours		Credit	
Code			F1 1 *	Lecture (L)	Tutorial (T)	Practical (P)#	Total Hours	-	
CHC723	Fue	l Cell Technology	PCL	3	0	0	3	3	
Pre-requisites Physics, Chemistry, Mathematics, Process calculation, Nand energy balance Chemistry CT+EA+ MT					/laterial				
-				and thoir a	nnlications				
' ' '			es of fuel cells and their applications te the working principle of fuel cells and its process design						
			_			-	_	11	
	CO3: Classify ma CO4: Demonstra				_		15		
Topics Cov	vered	Module – I	te the processii	18 01 14613	TOT THE THE	1 0011	[10 hrs	 1	
•		Introduction to	Fuel Cells: Introduction – working and types of fuel cell – low,						
		medium and high	igh temperature fuel cell, liquid and methanol types, proton						
		exchange memb	rane fuel cell s	olid oxide,	hydrogen	fuel cells -	thermod	lynamics	
		and electrochem	ical kinetics of	fuel cells.					
		Module - II					[10 hrs	.]	
			Cells: Hydrogen, Hydrocarbon fuels, effect of impurities such as ers, liquid hydrogen and compressed hydrogen-metal hydrides, ll.						
		Module – III					[14 hrs.]	
		Fuel cell electro	ochemistry: electrode kinetics, types of voltage losses, polarization						
		curve, fuel cell efficiency, Tafel equation, exchange currents, current density,							
		power density, potential and thermodynamics of fuel cell, Introduction to direct							

	methanol fuel cell.							
	Fuel cell process design: Main PEM fuel cell components, materials, properties							
	and processes: membrane, electrode, gas diffusion layer, bi-polar plates, Fuel cell							
	operating conditions: pressure, temperature, flow rates, humidity.							
	Module – IV [12 hrs.]							
	Fuel processing: Direct and in-direct internal reforming, Reformation							
	hydrocarbons by steam, CO ₂ and partial oxidation, Direct electro-catalytic							
	oxidation of hydrocarbons, carbon decomposition, Sulphur tolerance and							
	removal, Using renewable fuels for solid oxide fuel cell.							
Text Books,	Suggested Text Books:							
and/or	1. Hoogers G., Fuel Cell Technology Hand Book, CRC Press, 2003.							
reference	2. Karl Kordesch & Gunter R. Simader., Fuel Cells and Their Applications, 1st							
material	ed., VCH Publishers, NY, 2001.							
	Suggested Reference Books:							
	1. Barbir F., PEM Fuel Cells: Theory and Practice, 2nd edition,							
	Elsevier/Academic Press, 2013.							
	2. Subhash C., Singal and Kevin Kendall, High Temperature Fuel Cells:							
	Fundamentals, Design and Applications, Elsevier Advanced Technology,							
	2003.							

	mapping or or (course currently and r o (r regramme currently)											
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	3	3	-	2	3	-	-	-	-	-
CO2	2	1	3	3	-	2	3	-	-	i	-	-
CO3	2	1	3	3	-	2	3	-	-	-	-	-
CO4	2	1	3	3	-	2	3	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

Seventh (7th) Semester Department Electives

MTech Basket

				-						
Course	Title of the course	Program	Tota	Number	of contact h	ours	Credit			
Code		Core	Lecture	Tutorial	Practical	Total				
		(PCR)/	(L)	(T)	(P)	Hours				
		Electives			, ,	(H)				
		(PEL)				, ,				
0110040	BIOCHEMICAL AND	PEL	3	0	0	3	3			
CH9010	BIO ENGINEERING									
Pre-requ	isites	Course Ass	essment me	thods (Co	ntinuous (C	T) and end				
		assessment	t (EA))							
Basic kno	wledge of Chemical	CT+EA								
Reaction	Engineering,									
Thermod	ynamics, and Biology									
Course	 Understand the 	ne principles	of biocher	nical eng	ineering ar	nd their	industrial			
Outcome	s applications.									
	Analyze biorea	ctor performa	nce and opt	imize biop	rocess para	meters.				
	 Design bioproc 	ess systems fo	r the produ	ction of bi	iochemicals	and biopre	oducts.			
Topics	ics Module 1: Fundamentals of Biochemical Engineering (14 Hours)									
Covered	 Overview of bioprocessing and biotechnology. 									
	Kinetics of enzyme-catalyzed reactions: Michaelis-Menten equation and									
	inhibition models.									
	 Cell growth 	kinetics: Mor	od model, k	oatch and	continuous	cultures, y	ield			
	coefficients	5.								
	Module 2: Bioreac	tors and Proc	ess Design (14 Hours)						
	 Types of bid 	oreactors: Stir	red tank, air	lift, packe	d bed, and i	membrane	!			
	bioreactors	i.								
		fer in bioreact	ors: Oxygen	transfer,	diffusion, ar	nd scale-up)			
	strategies.									
		m processing:	Separation,	purification	on, and reco	overy of				
	bioproduct									
	Module 3: Applica		•	-						
		s in pharmace								
		ation and envi		• •	•					
		s: Production	of antibiotic	s, bioetha	inol, and bic	sensors.				
Text Boo	·			_		_	_			
and/or	1. Shuler, M.	-	. Bioproces:	s Enginee	ring: Basic	Concepts.	Pearson,			
reference			- - -							
material	2. Bailey, J. E	•	Biochemi	cal Engine	ering Fund	amentals.	McGraw			
	· ·	ition, 1986.								
	Reference Books	4 B'-	-	D.:	- 4 - 1 -	. D	1 = 200			
	1. Doran, P. N	1. Bioprocess	Engineering	Principle	s . Academic	Press, 2nd	d Edition,			
	2012.2. Blanch, H. W., & Clark, D. S. Biochemical Engineering. CRC Press,						. Edwa			
	· ·	w., & Clark, D	. S. Biochen	nicai Engii	neering. CR	C Press, 1s	t Edition,			
	1997.									

- 3. Najafpour, G. D. Biochemical Engineering and Biotechnology. Elsevier, 2nd Edition, 2015.
- 4. Stanbury, P. F., Whitaker, A., & Hall, S. J. Principles of Fermentation **Technology**. Butterworth-Heinemann, 3rd Edition, 2016.

POs	PO1	PO2	PO3
COs			
CO1			
CO2			
CO3			

Correlation levels1, 2 or 3 as defined below:

- 1: Slight (Low)
- 2: Moderate (Medium) 3: Substantial (High)

Course	Title of the course	Program	Tota	l Number	of contact h	ours	Credit		
Code		Core	Lecture	Tutorial	Practical	Total			
		(PCR)/	(L)	(T)	(P)	Hours			
		Electives				(H)			
		(PEL)							
CH9011	REACTIVE	PEL	3	0	0	3	3		
СПЭОТТ	MULTIPHASE SYSTEM								
Pre-requ	isites		essment me	thods (Co	ntinuous (C	T) and end			
Clara es l'ara	I December 5 and a section	assessment	t (EA))						
	Reaction Engineering,	CT+EA							
	nsfer Operations				1.1.1		1.1		
Course		 Understand the fundamental principles governing multiphase systems and t 							
Outcome									
	_								
	 Evaluate the performance of multiphase systems using advanced modeling 						ling		
	techniques.								
Topics	Module 1: Fundar		• •	-	•				
Covered	 Characteristic 				•				
	Transport phe	enomena in m	ultiphase sy	stems: Ma	iss, momen	tum, and e	nergy		
	transfer.					_			
		cs of multipha	se systems:	Flow regi	mes and bul	bble/dropl	et		
	dynamics.								
	Module 2: Reacto	_	• .	-					
		ked bed, fluidi		• •					
	Modeling mul	•		_	angian appr	oaches.			
		diffusion in po	-						
	Module 3: Applica		-	-	•				
	Industrial app	lications: Fisch	ner-Tropsch	synthesis	, hydrocrack	king, and o	xidation		
	processes.								
		in multiphase		_			_		
		Emerging technologies: Microreactors and membrane reactors for multiphase							
	systems.								

Text Books,	Textbooks								
and/or	1. Levenspiel, O. Chemical Reaction Engineering. Wiley, 3rd Edition, 1999.								
reference	2. Fan, LS., & Zhu, C. Principles of Gas-Solid Flows . Cambridge University								
material	Press, 1st Edition, 1998.								
	Reference Books								
	1. Ranade, V. V. Computational Flow Modeling for Chemical Reactor								
	Engineering. Academic Press, 1st Edition, 2002.								
	2. Shah, Y. T. Gas-Liquid-Solid Reactor Design. McGraw Hill, 1st Edition, 1979.								
	3. Froment, G. F., Bischoff, K. B., & De Wilde, J. Chemical Reactor Analysis and								
	Design. Wiley, 3rd Edition, 2010.								
	4. Krishna, R., & Sie, S. T. Design and Scale-up of Multiphase Reactors . Elsevier,								
	1st Edition, 1994.								

POs	PO1	PO2	PO3
COs			
CO1			
CO2			
CO3			

Correlation levels1, 2 or 3 as defined below:

Course	Title of the course	Program	Tota	l Number	of contact h	ours	Credit	
Code		Core	Lecture	Tutorial	Practical	Total	1	
		(PCR) /	(L)	(T)	(P)	Hours		
		Electives				(H)		
		(PEL)						
	ADVANCED PROCESS	PEL	3	0	0	3	3	
CH9012	INTEGRATION AND							
	OPTIMIZATION							
Pre-requ	isites	Course Ass	Course Assessment methods (Continuous (CT) and end					
		assessment (EA))						
Process D	esign and Optimization	CT+EA						
Course	Understand the principles of process integration and its role in sustainable							
Outcome	es design.							
	 Apply advar 	nced optimiza	tion technic	jues to sol	ve chemical	engineeri	ng	
	problems.							
	 Analyze and 	d improve pro	cess perforr	mance thro	ough integra	ation and		
	optimizatio	n strategies.						
Topics	Module 1: Fundam	entals of Pro	cess Integra	tion (14 H	ours)			
Covered	 Overview o 	f process integ	gration and	its signific	ance in sust	ainable ch	emical	
	industries.	industries.						
	 Heat integration: Pinch analysis, energy targeting, and heat exchanger 							
		network design.						
	 Water integ 	 Water integration: Water pinch and reuse/recycle strategies. 						

Module 2: Optimization Techniques (14 Hours)

- Linear and nonlinear programming: Basics and applications.
- Advanced optimization methods: Genetic algorithms, simulated annealing, and neural networks.
- Multi-objective optimization for sustainability and cost-effectiveness.

Module 3: Applications and Case Studies (14 Hours)

- Applications in petrochemical, pharmaceutical, and agrochemical industries.
- Life cycle assessment (LCA) and techno-economic analysis of integrated processes.
- Case studies: CO₂ capture and sequestration, waste-to-energy systems, and process retrofitting.

Text Books, and/or reference material

Textbooks

- 1. Smith, R. Chemical Process Design and Integration. Wiley, 2nd Edition, 2016.
- 2. Biegler, L. T., Grossmann, I. E., & Westerberg, A. W. Systematic Methods of Chemical Process Design. Prentice Hall, 1997.

Reference Books

- 1. Seider, W. D., Seader, J. D., & Lewin, D. R. **Product and Process Design Principles**. Wiley, 3rd Edition, 2016.
- 2. Douglas, J. M. Conceptual Design of Chemical Processes. McGraw Hill, 1988.
- 3. Floudas, C. A. **Nonlinear and Mixed-Integer Optimization**. Oxford University Press, 1995.
- **4.** Klemes, J. J. **Sustainability in the Process Industry: Integration and Optimization**. McGraw Hill, 1st Edition, 2010.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3
COs			
CO1			
CO2			
CO3			

Correlation levels1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

EIGHT (8th) SEMESTER

		EIGHT (8°	") SEMES	<u>IER</u>			
Course	Title of the course	Program	Total	Number	of contact h	ours	Credit
Code		Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives				(H)	
		(PEL)					
CH2001	Computer-aided	PEL	3	0	0	3	3
CHZUUI	Design						
Pre-requi	sites	Course Asse	essment me	thods (Co	ntinuous (CT) and end	
		assessment	: (EA))				
CHC601: C	Chemical Plant Design	CT+EA					
and Econo	omics or equivalent						
undergrad	luate-level course						
Course	Utilize com	puter-aided to	ols for proc	ess model	ing, simulat	ion, and	
Outcome	s optimizatio	n.					
	 Design cher 	mical process	equipment a	and systen	ns using con	nputationa	ıl
	software.						
	 Apply advar 	nced computa	tional techn	iques for	solving com	plex chemi	ical
	engineering	g problems.					
			ocess simulation with plant design and economic analysis.				
Topics	Module 1: Introdu	ction to Comp	uter-Aided	Design (1	4 Hours)		
Covered	 Fundament 	als of comput	er-aided des	sign in che	mical engin	eering.	
	Introduction	n to process simulators: Aspen Plus, HYSYS, and DWSIM.					
		ent of flow sheets for chemical process systems.					
		n to numerical methods: Solving algebraic and differential					
	·	n chemical engineering applications.					
	Module 2: Process	_		•	•		
	_	f steady-state	=	=	=	= =	
		ulation of uni	t operations	: Distillation	on, heat exc	hangers, r	eactors,
	and separat						
	· ·	on of chemical processes using simulators. s on chemical process design and troubleshooting using					
			process aes	ign and tr	oublesnooti	ng using	
	simulation s		inmont Desi	an (1.4 11-			
	Module 3: Comput	eat exchanger	=		-	cal reactor	rc ucina
	• Design of no	_	s, uistiliatiOi	COMMITTE	, and cheffil	Lai i Edului	s using
		oois. instrumentation diagram (P&ID) development.					
		costing and e			•	onal tools	
		t design and o			, computati	Jilai (0013.	
	Module 4: Advance	_	•		lours)		
		elligence (AI)		-	-	ations in ch	hemical
	engineering				, ,		
		nal fluid dyna	mics (CFD) f	or chemic	al process a	nalysis.	
	·	n algorithms a	, ,		•	•	
	Optimization	ii aigoriaiiiis a	and then ap	piications	iii process u	esign.	

Text Books,	Textbooks
and/or	1. Biegler, L. T., Grossmann, I. E., & Westerberg, A. W. Systematic Methods of
reference	Chemical Process Design. Prentice Hall, 1997.
material	2. Seider, W. D., Seader, J. D., & Lewin, D. R. Product and Process Design
	Principles: Synthesis, Analysis, and Evaluation. Wiley, 3rd Edition, 2017.
	Reference Books
	1. Towler, G., & Sinnott, R. Chemical Engineering Design: Principles, Practice,
	and Economics of Plant and Process Design. Elsevier, 2nd Edition, 2013.
	2. Himmelblau, D. M., & Riggs, J. B. Basic Principles and Calculations in
	Chemical Engineering. Pearson, 8th Edition, 2012.
	3. Bhattacharyya, D., & Reklaitis, G. V. Introduction to Chemical Engineering
	Computing. CRC Press, 2nd Edition, 2014.
	4. Versteeg, H. K., & Malalasekera, W. An Introduction to Computational Fluid
	Dynamics: The Finite Volume Method . Pearson Education, 2nd Edition, 2007.

POs	PO1	PO2	PO3
COs			
CO1			
CO2			
CO3			
CO4			

Correlation levels1, 2 or 3 as defined below:

Title of the course	Program	Total	Number	of contact h	ours	Credit
	Core	Lecture	Tutorial	Practical	Total	
	(PCR) /	(L)	(T)	(P)	Hours	
	Electives				(H)	
	(PEL)					
ADVANCED	PEL	4	0	0	4	4
MATERIALS FOR						
CHEMICAL						
ENGINEERING						
APPLICATIONS						
sites	Course Asse	urse Assessment methods (Continuous (CT) and end				
	assessment	(EA))				
ses in materials	CT+EA					
d chemical						
g thermodynamics						
 Understand 	the propertie	s, synthesis	, and char	acterization	of advanc	ed
materials.						
Analyze the	applications of	of advanced	materials	in chemical	engineeri	ng
Explore emerging trends and innovations in advanced materials for industrial						
use.						
5	MATERIALS FOR CHEMICAL ENGINEERING APPLICATIONS sites Ses in materials d chemical g thermodynamics Understand materials. Analyze the processes. Explore eme	ADVANCED MATERIALS FOR CHEMICAL ENGINEERING APPLICATIONS Sites Course Assessment Ses in materials CCT+EA Understand the properties materials. Analyze the applications of processes. Explore emerging trends	(PCR) / (L) Electives (PEL) ADVANCED MATERIALS FOR CHEMICAL ENGINEERING APPLICATIONS Sites Course Assessment me assessment (EA)) CT+EA Chemical g thermodynamics Understand the properties, synthesis materials. Analyze the applications of advanced processes. Explore emerging trends and innovat	(PCR) / (L) (T) Electives (PEL) ADVANCED PEL 4 0 MATERIALS FOR CHEMICAL ENGINEERING APPLICATIONS Sites Course Assessment methods (Correspondent (EA)) Sees in materials Chemical g thermodynamics Understand the properties, synthesis, and charmaterials. Analyze the applications of advanced materials processes. Explore emerging trends and innovations in advanced.	(PCR) / (L) (T) (P) Electives (PEL) ADVANCED PEL 4 0 0 MATERIALS FOR CHEMICAL ENGINEERING APPLICATIONS Sites Course Assessment methods (Continuous (CT assessment (EA))) Ses in materials CT+EA Chemical generals thermodynamics • Understand the properties, synthesis, and characterization materials. • Analyze the applications of advanced materials in chemical processes. • Explore emerging trends and innovations in advanced materials.	(PCR) / (L) (T) (P) Hours Electives (PEL) ADVANCED PEL 4 0 0 4 MATERIALS FOR CHEMICAL ENGINEERING APPLICATIONS Sites Course Assessment methods (Continuous (CT) and end assessment (EA)) CT+EA C chemical g thermodynamics • Understand the properties, synthesis, and characterization of advance materials. • Analyze the applications of advanced materials in chemical engineeri processes. • Explore emerging trends and innovations in advanced materials for in

	Evaluate material performance for sustainable and efficient chemical
	 Evaluate material performance for sustainable and efficient chemical processes.
Topics	Module 1: Properties and Synthesis of Advanced Materials (14 Hours)
Covered	 Introduction to advanced materials: Polymers, composites, ceramics, and nanomaterials.
	Structure-property relationships in advanced materials.
	 Synthesis of advanced materials: Sol-gel, chemical vapor deposition (CVD), physical vapor deposition (PVD), and hydrothermal methods.
	 Advanced polymeric and composite materials for chemical engineering applications.
	Module 2: Characterization of Advanced Materials (14 Hours)
	 Techniques for material characterization: X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM).
	 Thermal analysis techniques: Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC).
	Spectroscopic techniques: FTIR, UV-Vis, and Raman spectroscopy.
	Mechanical testing of materials: Tensile, compressive, and impact tests.
	Module 3: Applications of Advanced Materials in Chemical Engineering (14 Hours)
	Membranes for separation and filtration processes.
	Catalysts and catalytic materials in chemical reactions.
	 Materials for energy storage and conversion: Batteries, fuel cells, and supercapacitors.
	Corrosion-resistant materials for chemical industries.
	Module 4: Emerging Trends in Advanced Materials (14 Hours)
	Biomaterials and their applications in chemical and biomedical industries.
	 Functional materials: Smart materials, self-healing materials, and shape- memory alloys.
	Advanced carbon-based materials: Graphene, carbon nanotubes, and fullerenes.
	Sustainability and recyclability of advanced materials.
Text Books,	Textbooks
and/or	1. Ashby, M. F., & Jones, D. R. H. Engineering Materials: An Introduction to
reference	Properties, Applications, and Design. Elsevier, 4th Edition, 2012.
material	2. Callister, W. D., & Rethwisch, D. G. Materials Science and Engineering: An Introduction. Wiley, 10th Edition, 2020.
	Reference Books
	 Schwartz, M. M. Composite Materials: Properties, Nondestructive Testing, and Repair. Prentice Hall, 1997.
	 Hull, D., & Clyne, T. W. An Introduction to Composite Materials. Cambridge University Press, 2nd Edition, 2006.
	3. Ratner, B. D., & Hoffman, A. S. Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, 3rd Edition, 2013.
	4. Li, J., & Kaner, R. B. Graphene-Based Materials: Science and Technology . Wiley, 2016.

POs	PO1	PO2	PO3
COs			
CO1			
CO2			
CO3			
CO4			

Correlation levels1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Course	Title of the course	Program	Tota	l Number	of contact h	ours	Credit			
Code		Core	Lecture	Tutorial	Practical	Total				
		(PCR) /	(L)	(T)	(P)	Hours				
		Electives				(H)				
		(PEL)								
	Environment and	PEL	4	0	0	4	2			
CH2051	Membrane									
	Laboratory									
Pre-requ	isites	Course Ass	essment me	thods (Co	ntinuous (C	T) and end				
		assessment	t (EA))							
	ntal knowledge of	CT+EA								
environm	ental chemistry and									
process a										
Course	•	Ability to perform environmental pollutant analysis in air and water								
Outcome	• • • •	analytical skill in abatement technology								
	Ability to synth			•	-					
	Ability to inve		nance of men	mbrane sys	stems in pur	ification				
Topics	List of Experiment									
Covered	1. Water Quality A	•								
		of pH, turbidity, and alkalinity of water samples.								
		o Estimating total dissolved solids (TDS) and total suspended solids (TSS).								
		2. Measurement of Key Pollutants								
	o Determining b (COD).	iochemical oxy	gen deman	d (BOD) ar	nd chemical	oxygen de	emand			
	•	o Analysis of heavy metals (e.g., lead, chromium, arsenic) using atomic absorption spectroscopy (AAS).								
		3. Air Quality Monitoring								
	•	o Measurement of particulate matter (PM10 and PM2.5) using air samplers.								
		o Determination of gaseous pollutants such as SO ₂ , NO _x , and CO using portable gas								
	analyzers.									
	4. Advanced Wast			ses						
	o Study of Mem	brane-based sy	ystems							
	o Study of advar	o Study of advanced oxidation processes (AOPs).								

	 5. Microbiological Analysis Total coliform and fecal coliform count in water samples using the MPN method. 6. Membrane-Based Treatment Systems Demonstration and analysis of reverse osmosis (RO) and ultrafiltration (UF) systems.
	o Evaluation of membrane performance for desalination and wastewater treatment.
Text Books,	Textbooks
and/or	1. Sawyer, C. N., McCarty, P. L., & Parkin, G. F. Chemistry for
reference	Environmental Engineering and Science . McGraw Hill, 5th Edition, 2003.
material	2. Manahan, S. E. Environmental Chemistry . CRC Press, 10th Edition, 2017.
	Reference Books
	1. P.Pal, Industrial Water Treatment Process Technology, Elsevier, 2017
	2. P.Pal, Membrane-based Technologies for Environmental Pollution
	Control, Elsevier Science 2020
	3. AWWA. Standard Methods for the Examination of Water and
	Wastewater. American Public Health Association, 23rd Edition, 2017.

POs	PO1	PO2	PO3
COs			
CO1	3	2	1
CO2	3	2	1
CO3	3	2	1
CO4	3	2	1

Correlation levels1,2 or 3 as defined below:

EIGHT (8th) Semester Department Electives MTech Basket

Course	Title of the course	Program	Tota	l Number	of contact h	ours	Credit
Code		Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives	, ,		, ,	(H)	
		(PEL)					
CH9020	BUBBLE AND	PEL	3	0	0	3	3
C113020	DROPLET DYNAMICS						
Pre-requ	isites	Course Assessment methods (Continuous (CT) and end assessment (EA))					
		CT+EA					
Course	Understand the	fundamenta	l principles g	governing	bubble and	droplet dy	namics.
Outcome	• Analyze transpo	ort phenomer	na and dyna	mics in inc	dustrial syste	ems.	
	Apply the prince	iples of bubb	le and dropl	let dynam	ics to proces	ss optimiza	ation and
	emerging technolo	ogies.	·	·	•	·	
Topics	Module 1: Fundam	entals of Bub	ble and Dro	plet Dyna	mics (12 Ho	ours)	
Covered		aracteristics of			-	-	rfacial
	phenomena			•	' '	,	
	Surface tens	sion, capillary	pressure, a	nd Young-	Laplace equ	ation.	
	 Dynamics o 	f bubble and o	droplet form	nation: Nu	cleation, gro	owth, and	
	detachmen	t.	·				
	 Coalescence 	e, breakup, an	d stability.				
	Module 2: Transpo	rt Phenomen	a in Bubble	s and Dro	plets (14 Ho	urs)	
	 Momentum 	, heat, and m	ass transfer	in single a	and multipha	ase system	ıs.
	 Drag force, 	terminal velo	city, and bul	bble rise ir	n stagnant a	nd flowing	fluids.
	 Interaction 	between bub	bles/droplet	ts and soli	d surfaces: \	Netting an	d
	spreading.						
	 Applications 	s in boiling, co	ndensation	, and spra	y systems.		
	Module 3: Applicat	tions in Indus	trial System	s (16 Hou	rs)		
	 Bubbles in r 	eactors: Fluid	ized beds, b	ubble colu	umn reactor	s, and ferr	nenters.
	 Droplets in 	spray drying,	coating, ato	mization,	and emulsif	ication.	
	 Emerging approximation 	oplications in	microfluidic	s, inkjet p	rinting, and	drug deliv	ery
	systems.						
	 Case studie 	s: Bubble dyn	amics in was	stewater t	reatment, d	roplet-bas	ed
	microreacto	ors.					
Text Boo	·						
and/or	1. Clift, R., Grace		er, M. E. Bu	bbles, Dro	ps, and Par	ticles. Dov	er
reference	, ·			_			
material	2. Levich, V. G. P	-	al Hydrodyi	namics . Pr	entice Hall,	2nd Editio	n, 1962.
	Reference Books						
	1. Batchelor, G. I	K. An Introduc	ction to Flui	d Dynami	cs . Cambrid	ge Univers	ity Press,
	2000.						

- 2. Crowe, C. T., Sommerfeld, M., & Tsuji, Y. Multiphase Flows with Droplets and Particles. CRC Press, 2nd Edition, 2011.
- 3. Brennen, C. E. Fundamentals of Multiphase Flow. Cambridge University Press, 2005.

POs	PO1	PO2	PO3
COs			
CO1	3	2	1
CO2	3	2	1
CO3	3	2	1

Correlation levels1, 2 or 3 as defined below:

- 1: Slight (Low)
- 2: Moderate (Medium) 3: Substantial (High)

Course	Title of the course	Program	Tota	l Number	of contact h	ours	Credit	
Code		Core	Lecture	Tutorial	Practical	Total		
		(PCR) /	(L)	(T)	(P)	Hours		
		Electives				(H)		
		(PEL)						
CH9021	ENVIRONMENTAL	PEL	3	0	0	3	3	
CHISOZI	ENGINEERING							
Pre-requ	isites	Course Asse	essment me	thods (Co	ntinuous (C	T) and end		
		assessment	: (EA))					
Basic sub	jects of Chemical	CT+EA						
Engineer	ing and Mathematics							
Course	 Understand the 	fundamental	s of environ	ımental po	ollution and	regulatory	1	
Outcome								
	 Design and eva 	•		_				
	 Develop sustair 	nable practice	s for minimi	zing envir	onmental in	npact in in	dustrial	
	processes.							
Topics	Module 1: Fundan							
Covered	Overview of air		•					
	 Environmental 	regulations ar	nd standards	s: Nationa	l and interna	ational		
	frameworks.		, ,					
	Environmental					(LCA).		
	Module 2: Pollutio			-				
	Air pollution co	ntrol: Cyclone	es, scrubbers	s, electros	tatic precipi	tators, and	d bag	
	filters.		. 51					
	Water and was		-			•		
	Soil remediation	n techniques:	Rioremedia	tion, phyt	oremediatio	on, and the	ermai	
	treatment.	-late positi	· · · · · ·					
		 Module 3: Sustainable Practices in Environmental Engineering (16 Hours) Waste management: Reduction, reuse, recycling, and energy recovery. 						
					٠,	ecovery.		
	Carbon capture	•		_				
	Green process of the desired control of	Green process engineering: Resource efficiency, circular economy, and						

	 sustainable manufacturing. Case studies: Sustainable solutions in the chemical industry and environmental restoration projects.
Text Books,	Textbooks
and/or	1. Peavy, H. S., Rowe, D. R., & Tchobanoglous, G. Environmental Engineering.
reference	McGraw Hill, 1985.
material	2. Metcalf & Eddy. Wastewater Engineering: Treatment and Reuse. McGraw Hill,
	5th Edition, 2013.
	Reference Books
	1. Rao, C. S. Environmental Pollution Control Engineering. Wiley, 2nd Edition,
	2006.
	2. Tchobanoglous, G., & Kreith, F. Handbook of Solid Waste Management. McGraw
	Hill, 2nd Edition, 2002.
	3. Kumar, R., & Singh, S. N. Air Pollution Control. The Energy and Resources
	Institute (TERI), 2010.

POs COs	PO1	PO2	PO3
CO1	3	2	1
CO2	3	2	1
CO3	3	2	1

Correlation levels1, 2 or 3 as defined below:

Course	Title of the course	Program	Total	Number	of contact h	ours	Credit
Code		Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives				(H)	
		(PEL)					
	CHEMICAL	PEL	3	0	0	3	3
CH9022	PROCESSES FOR						
CHSUZZ	MICRO-ELECTRONIC						
	FABRICATION						
Pre-requ	isites	Course Asse	essment me	thods (Co	ntinuous (C1	Γ) and end	
		assessment	: (EA))				
		CT+EA					
Course	 Understand th 	ie chemical pr	ocesses inv	olved in m	icroelectror	nics fabrica	ition.
Outcome	es • Analyze and o	ptimize depos	sition, etchir	ng, and po	lishing techr	niques.	
	 Apply microfa 	brication prin	ciples to em	erging tec	hnologies in	electroni	cs and
	nanotechnology.						
Topics	Module 1: Introdu	ction to Micr	oelectronics	Fabricati	on (12 Hour	rs)	
Covered	 Overview of se 	emiconductor	industry an	d fabricati	on processe	es.	
	Materials for i	microelectron	ics: Silicon, I	II-V semic	onductors, a	and thin fil	ms.

• Cleanroom protocols and contamination control.

Module 2: Chemical Processes in Fabrication (16 Hours)

- Deposition processes: Chemical vapor deposition (CVD), physical vapor deposition (PVD), and atomic layer deposition (ALD).
- Etching processes: Wet and dry etching techniques, anisotropic and isotropic etching.
- Chemical mechanical polishing (CMP): Principles and applications.

Module 3: Emerging Technologies and Case Studies (14 Hours)

- Advanced lithography: Photolithography, EUV lithography, and nanoimprint lithography.
- Applications of microelectronics in MEMS and nanoelectronics.
- Case studies: Fabrication of transistors, sensors, and photovoltaic devices.

Text Books, and/or reference material

Textbooks

- 1. Campbell, S. A. **The Science and Engineering of Microelectronic Fabrication**. Oxford University Press, 2nd Edition, 2001.
- 2. Madou, M. J. **Fundamentals of Microfabrication and Nanotechnology**. CRC Press, 3rd Edition, 2011.

Reference Books

- 1. Plummer, J. D., Deal, M. D., & Griffin, P. B. Silicon VLSI Technology: Fundamentals, Practice, and Modeling. Pearson, 2000.
- 2. Jaeger, R. C. Introduction to Microelectronic Fabrication. Prentice Hall, 2nd Edition, 2002.
- 3. Wolf, S., & Tauber, R. N. Silicon Processing for the VLSI Era, Vol. 1: Process Technology. Lattice Press, 2000.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3				
COs							
CO1	3	2	1				
CO2	3	2	1				
CO3	3	2	1				

Correlation levels1, 2 or 3 as defined below:

Course	Title of the course	Program	ram Total Number of contact hours Cred				Credit
Code		Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives				(H)	
		(PEL)					
CHOOSO	ADVANCED FLUID	PEL	3	0	0	3	3
CH9030	DYNAMICS						
Pre-requ	isites	Course Assessment methods (Continuous (CT) and end					
		assessment (EA))					
Basic Fluid Mechanics and CT		CT+EA		•		•	
Transpor	t Phenomena						

CURRICULUM AND SYLLABUS FOR DUAL DEGREE IN CHEMICAL ENGINEERING

Course	Understand the principles and mathematical modeling of complex fluid flows.
Outcomes	Apply advanced techniques to analyze turbulent, multiphase, and non-
	Newtonian flows.
	Develop numerical solutions for fluid flow problems in chemical engineering
	applications.
Topics	Module 1: Fundamentals and Governing Equations (12 Hours)
Covered	Review of Navier-Stokes equations and boundary conditions.
	Dimensional analysis and similarity principles in complex flows.
	Non-Newtonian fluids: Rheological models and flow behavior.
	Module 2: Advanced Flow Phenomena (14 Hours)
	Turbulent flow: Transition to turbulence, Reynolds-averaged Navier-Stokes
	(RANS), and turbulence models.
	Multiphase flow: Bubbly flow, particle-laden flow, and liquid-liquid systems.
	Compressible flows and shockwave phenomena.
	Module 3: Numerical Techniques and Applications (16 Hours)
	Introduction to computational fluid dynamics (CFD): Finite volume and finite
	element methods.
	Applications in process industries: Reactors, pipelines, and heat exchangers.
	Case studies: Flow modeling in microchannels and porous media.
Text Books,	Textbooks
and/or	1. White, F. M. Viscous Fluid Flow. McGraw Hill, 3rd Edition, 2005.
reference	2. Bird, R. B., Stewart, W. E., & Lightfoot, E. N. Transport Phenomena . Wiley, 2nd
material	Edition, 2006.
	Reference Books
	1. Anderson, J. D. Computational Fluid Dynamics: The Basics with Applications.
	McGraw Hill, 1995.
	2. Fox, R. W., McDonald, A. T., & Pritchard, P. J. Introduction to Fluid Mechanics.
	Wiley, 8th Edition, 2011.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3
COs			
CO1	3	2	1
CO2	3	2	1
CO3	3	2	1

Correlation levels1, 2 or 3 as defined below:

Course	Title of the course	Program	Tota	l Number	of contact h	ours	Credit
Code		Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives				(H)	
		(PEL)					
	CIRCULAR ECONOMY	PEL	3	0	0	3	3
CH9031	AND WASTE						
	VALORIZATION						
Pre-requ	isites	Course Ass	essment me	thods (Co	ntinuous (C	T) and end	
		assessmen	t (EA))				
Environn	nental Engineering and	CT+EA					
Industria	l Waste Management	e Management					
Course	Understand the	Understand the principles and strategies of circular economy in industrial					ıl
Outcome	es processes.	processes.					
	Analyze and im	 Analyze and implement waste valorization methods for resource recovery. 					·y.
	 Evaluate case s 	Evaluate case studies and propose innovative solutions for achieving					
	sustainability goal						
Topics	Module 1: Introdu	Module 1: Introduction to Circular Economy (12 Hours)					
Covered	 Fundament 	als of circular	economy: 0	Concepts, s	strategies, a	nd global p	oractices.
	• Linear vs. ci	rcular econon	ny: Challeng	es and op	portunities	in transitio	ning.
	 Policies, reg 	gulations, and	sustainabili	ty goals.			
	Module 2: Waste \	/alorization T	echnologies	(14 Hour	s)		
	 Physical, ch 	emical, and b	iological me	thods of v	vaste conve	rsion.	
	 Biomass va 	orization: Bio	fuels, biopla	stics, and	bio-based c	hemicals.	
	 Industrial sy 	ymbiosis and i	resource red	covery froi	m industrial	waste stre	ams.
	Module 3: Applica	tions and Cas	e Studies (1	6 Hours)			
	 Circular ecc 	nomy in chen	nical industi	ries: Zero-	waste manu	facturing a	and
	closed-loop	processes.					
	 Case studie 	s: Waste valo	rization in a	gro-indust	ries, petrocl	hemicals, a	and
	constructio						
		ends: Waste-	to-energy, c	arbon cap	ture, and lif	e cycle thi	nking.
Text Boo	·						
and/or	1. Stahel, W. F		-			•	
reference	· · · · · · · · · · · · · · · · · · ·			e: A Handl	ook for Ma	nagement	. .
material		ress, 2nd Edit	ion, 2019.				
	Reference Books						
	1. Clark, J. H.,			I Sustaina	ble Medicin	al Chemist	r y . Royal
	,	Chemistry, 201					
	2. Lange, JP. 2021.	Sustainable D	Developmer	it in the C	hemical Ind	ustry. Wile	ey-VCH,

POs	PO1	PO2	PO3
COs			
CO1			
CO2			
CO3			

Correlation levels1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

Course	Title of the course	Program	Total	Number	of contact h	ours	Credit
Code		Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives				(H)	
		(PEL)					
CH9032	CATALYSIS IN	PEL	3	0	0	3	3
C119032	CHEMICAL INDUSTRY						
Pre-requ	isites	Course Asse	essment me	thods (Co	ntinuous (C	Γ) and end	
		assessment	: (EA))				
		CT+EA					
Course	 Understand the 	principles of	catalysis an	d its role i	n chemical r	reactions.	
Outcome	 Develop and op 	Develop and optimize catalysts for specific industrial applications.					
	Apply advanced	Apply advanced catalytic methods to address sustainability challenges.					
Topics	Module 1: Fundam	entals of Cata	alysis (12 Ho	ours)			
Covered	 Principles of 	homogeneo	us and hetei	rogeneous	catalysis.		
	 Catalyst pro 	Catalyst properties: Surface area, porosity, and active sites.					
	Mechanisms	s and kinetics	of catalytic	reactions.			
	Module 2: Catalyst	Module 2: Catalyst Design and Synthesis (14 Hours)					
	 Methods of 	catalyst prep	aration: Imp	regnation	, sol-gel, an	d hydrothe	ermal
	methods.						
		is and structu		s: Design	and charact	erization	
	·	(XRD, SEM, BE	•				
		ctivation: Fou	-	•	oisoning.		
	Module 3: Industria	-	-	-			
		refining: Hydr	-	-			
	• •	in petrocher	• •				
_		/sis: Enzymati	c catalysis, _I	ohotocata	lysis, and CC)2 utilizati	on.
Text Boo	<i>'</i>	4 O.T.	\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		D		
and/or	1. Thomas, J. N			-	Practice of F	Heterogen	eous
reference	_	iley-VCH, 2nd	•		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- 1::: 45	00
material	2. Levenspiel,	U. Chemical F	reaction En	gineering.	wiley, 3rd E	aition, 19	99.
	Reference Books	A 0 1: W 1-		La C£	Chamatata	and Catal	!-
	1. Somorjai, G.		troduction	to Surtace	cnemistry	and Cataly	/SIS.
	• •	Edition, 2010. C. Catalytic Chemistry. Wiley, 2nd Edition, 2005.					
		-	-	•		agoneous f	Catalysis
	3. Ertl, G., Kno		•	. naiiub00	ok of Hetero	geneous (Lataiysis.
	wiley-vCH,	Wiley-VCH, 2nd Edition, 2008.					

POs	PO1	PO2	PO3
COs			
CO1			
CO2			
CO3			

Correlation levels1, 2 or 3 as defined below:

NINE (9th) SEMESTER

		ININE (9) SEIVIES	ILIN			•
Course	Title of the course	Program	Tota	l Number	of contact h	ours	Credit
Code		Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives				(H)	
		(PEL)					
	MULTI-SCALE	PEL	4	0	0	4	4
CH3001	SIMULATION OF						
CHSUUI	CHEMICAL						
	PROCESSES						
Pre-requ	isites	Course Ass	essment me	thods (Co	ntinuous (C	Γ) and end	
		assessmen	t (EA))				
Process C	ontrol and	CT+EA					
Instrumer	ntation, Transport						
Phenomena							
Course	• Understand the fundamentals of multi-scale modeling and its relevance to					to	
Outcome	chemical processe	s.					
	 Apply molecula 	ar and mesosc	ale simulation	on techniq	ues to study	y process	
	behaviors.						
	 Develop mode 	ls for process s	systems usir	ng advance	ed simulatio	n tools.	
	 Solve practical 	problems in cl	nemical eng	ineering u	sing multi-s	cale appro	aches.
Topics	Module 1: Introdu	Module 1: Introduction to Multi-Scale Modeling (14 Hours)					
Covered	 Fundamen 	tals of multi-so	ale modelin	ig: Molecu	lar, mesosco	opic, and	
	continuum	scales.					
	=	of models acr	oss scales: E	Bridging m	olecular and	d macrosco	opic
	behaviors.						
	= =	s in chemical	processes: R	Reaction ki	netics, trans	sport phen	omena,
		al properties.		_	_		
	Module 2: Molecu			-	•		
		Dynamics (MD	•	is: Interato	omic potenti	ials, force	fields,
		cal mechanics					
		lo methods: Ra		-	kov chains, a	and	
	•	amic property	•		1 (1 55.4)		
		modeling: Lat	tice Boltzma	inn Metho	d (LBM) and	d Dissipativ	/e
	•	namics (DPD).	مان د د دادادا	\	/4 A !!-	-1	
	Module 3: Process	-	_	-	•	-	
		scale modelin			•	, ,	
		nulation tools:				•	•
		timization tech	•		•	gramming,	, Genetic
	_	(GA), and Arti			(AININ).		
	Module 4: Applica	modeling in c		-	and natur	narization	
		nodeling in c					
		ntal application		_			
Text Boo		iitai appiitatio	iis. ivioueiiii	g poliutioi	i dispersion	and CO2 C	apture.
	· ·	T & Krastan	itic NA NAME	ti_Scala Si	mulation M	athods for	
and/or	1. Logtenberg	g, J., & Kresten	1115, 171. 17111	u-scale 311	nulation ivi	etiious ior	

reference	Chemical Engineering. Springer, 2017.
material	2. Li, J., Zhang, H., & Xu, W. Multi-Scale Modeling and Simulation in Chemical
	Engineering. Elsevier, 2020.
	Reference Books
	1. Bird, R. B., Stewart, W. E., & Lightfoot, E. N. Transport Phenomena. Wiley,
	2nd Edition, 2002.
	2. AspenTech. Aspen Plus User Guide. Aspen Technology Inc., Latest Edition.
	3. Fletcher, R. Practical Methods of Optimization . Wiley, 2nd Edition, 2000.
	4. Frenkel, D., & Smit, B. Understanding Molecular Simulation: From
	Algorithms to Applications. Academic Press, 2nd Edition, 2001.

POs	PO1	PO2	PO3
COs			
CO1			
CO2			
CO3			
CO4			

Correlation levels1, 2 or 3 as defined below:

Course	Title of the course	Program	Tota	l Number (of contact h	ours	Credit
Code		Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives				(H)	
		(PEL)					
	ADVANCE	PEL	4	0	0	4	4
CH3002	SEPARATION						
	PROCESSES						
Pre-requ	isites	Course Asse	essment me	thods (Co	ntinuous (C1	Γ) and end	
		assessment	assessment (EA))				
CHC502 I	Mass Transfer	CT+EA					
Operatio	ns, CHC506 Chemical						
Reaction	Engineering						
Course	 Understand th 	ne principles a	nd thermod	lynamics o	f advanced	separation	1
Outcome	es processes.						
	 Apply modeling 	ng techniques	to simulate	separatio	n systems us	sing comp	utational
	tools.						
	Evaluate and of	optimize adva	nced separa	ition proce	esses for ind	ustrial	
	applications.						
	Analyze emerging separation technologies and their applicability to specific						
	processes.						
Topics	Module 1: Fundamentals of Advanced Separation Processes (14 Hours)						
Covered	Overview of se	eparation tech	nnologies: C	onvention	al vs. advan	ced.	

- Thermodynamic basis of separations: Phase equilibria and selectivity.
- Mathematical modeling and simulation of separation processes.

Module 2: Emerging Separation Technologies (14 Hours)

- Membrane-based separation processes: Microfiltration, ultrafiltration, nanofiltration, and reverse osmosis.
- Adsorptive separations: Pressure Swing Adsorption (PSA) and Temperature Swing Adsorption (TSA).
- Hybrid separations: Pervaporation, membrane distillation, and reactive distillation.

Module 3: Advanced Topics and Case Studies (14 Hours)

- Supercritical fluid extraction and ionic liquid separations.
- Separation in bioprocessing: Chromatography and affinity-based separations.
- Industrial applications: CO₂ capture, desalination, and petrochemical processing.

Module 4: Simulation and Optimization of Separation Systems (14 Hours)

- Process design and optimization using ASPEN Plus and HYSYS.
- Economic evaluation and sustainability in separation processes.
- Case studies on advanced separation systems in chemical industries.

Text Books, and/or reference material

Textbooks

- 1. Seader, J. D., Henley, E. J., & Roper, D. K. **Separation Process Principles**. Wiley, 4th Edition, 2016.
- 2. King, C. J. **Separation Processes**. McGraw Hill, 2nd Edition, 1980.

Reference Books

- 1. Wankat, P. C. Separation Process Engineering. Pearson, 4th Edition, 2021.
- 2. Geankoplis, C. J. **Transport Processes and Unit Operations**. Prentice Hall, 4th Edition, 2003.
- 3. Noble, R. D., & Stern, S. A. Membrane Separations Technology: Principles and Applications. Elsevier, 1st Edition, 1995.
- 4. Humphrey, J. L., & Keller, G. E. **Separation Process Technology**. McGraw Hill, 1997.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3
COs			
CO1			
CO2			
CO3			
CO4			

Correlation levels1, 2 or 3 as defined below:

NINTH (9th) Semester Department Electives MTech Basket

Course	Title of the course	Program	Tota	l Number	of contact h	ours	Credit
Code		Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives				(H)	
		(PEL)					
CU10040	BIOFUEL	PEL	3	0	0	3	3
CH9040	TECHNOLOGY						
Pre-requ	isites	Course Ass	essment me	thods (Co	ntinuous (C	T) and end	
		assessmen	t (EA))				
Basics of	Energy Engineering,	CT+EA					
Chemical	Reaction Engineering						
Course	 Understan 	d the fundame	ntals of biof	fuels and t	heir signific	ance in sus	stainable
Outcome	es energy sys	tems.					
	 Analyze and evaluate various feedstocks and conversion technologies. 				s.		
	 Assess the economic and environmental impacts of biofuel production. 				n.		
Topics	Module 1: Introd	Module 1: Introduction to Biofuels (12 Hours)					
Covered	 Overview 	of energy resou	ırces: Fossil	fuels vs. r	enewable ei	nergy.	
	 Classificat 	ion of biofuels:	First, secon	d, and thi	rd generatio	ns.	
	 Feedstocks: Agricultural residues, lignocellulosic biomass, algae, and waste 						
	streams.						
	Module 2: Biofue	l Production Te	echnologies	(14 Hours	s)		
	Biochemic	al conversion:	Fermentatio	n, anaero	bic digestion	n, and enzy	ymatic
	hydrolysis						
		emical convers	ion: Gasifica	ition, pyrc	lysis, and tr	ansesterifi	cation
	for biodies						
		and algal biofu	el technolog	gies: Bioet	hanol, biobu	itanol, and	
	biohydrog						
	Module 3: Sustain	-	•	-			
	-	nalysis of biofu		•	• .	balance.	
		and policy aspe		=			
	• • • • • • • • • • • • • • • • • • • •	ns in transport	ation, powe	r generati	on, and indu	istrial heat	ing.
Text Boo	·						
and/or	·	A. Biofuels: Se	curing the F	Planet's Fu	iture Energy	, Needs . Sp	oringer,
reference							
material		Advanced Biof	uels and Bio	products	Springer, 20	012.	
	Reference Books						
		., et al. Biofuel s		e Feedsto	cks and Cor	nversion P	rocesses
		Press, 2nd Edit	•				
	2. Chandra, F	R., et al. Advan	ces in Biofu	el Product	i on . Springe	er, 2019.	

POs	PO1	PO2	PO3
COs			
CO1			
CO2			
CO3			

Correlation levels1, 2 or 3 as defined below:

Course	Title of the course	Program	Tota	l Number	of contact h	ours	Credit
Code		Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives				(H)	
		(PEL)					
	ARTIFICIAL	PEL	3	0	0	3	3
	INTELLIGENCE AND						
CH9041	OPTIMIZATION FOR						
	CHEMICAL						
	PROCESSES					<u> </u>	
Pre-requ	isites		essment me	ethods (Co	ntinuous (C	T) and end	
		assessment	t (EA))				
	1odeling and	CT+EA					
	n, Numerical Methods						
Course		oly AI techniques to model and analyze chemical process systems.					
Outcome	•	 Solve optimization problems using advanced algorithms. Integrate AI and optimization strategies for improving process efficiency a 					
		•	tion strateg	gies for imp	proving prod	cess efficie	ncy and
T:	sustainabili	•	ما المدمالات	/43 !!			
Topics Covered	Module 1: Introduc	als of Al: Mac				noural not	works
Covereu		f Al tools and			-		WUIKS.
		modeling in			•	-	n and
	clustering.	modeling in t	cricimear pro	occ35c3. 10	cg1 c331011, c	iassificatio	ii, aiia
	Module 2: Optimiz	ation Technic	iues (14 Hoi	urs)			
	•	n principles: L	•	-	rogramming	g, dynamic	
	programmi			•	· ·	<i>3.</i> ,	
		tic algorithms	: Genetic al	gorithms,	particle swa	rm optimi:	zation,
	simulated a	nnealing.					
		Multi-objective optimization in chemical process systems.					
	Module 3: Applicat						
		nitoring and f	_	_	•		
	•	n in reactor d	esign, energ	gy efficiend	cy, and supp	ly chain	
	manageme					_	
	 Case studie 	s: Al in proces	 Case studies: Al in process control and advanced process automation. 				

Text Books,	Textbooks
and/or	1. Babu, B. V. Process Plant Simulation and Optimization. CRC Press, 2020.
reference	2. Hastie, T., Tibshirani, R., & Friedman, J. The Elements of Statistical Learning.
material	Springer, 2nd Edition, 2009.
	Reference Books
	1. Rao, S. S. Engineering Optimization: Theory and Practice. Wiley, 4th Edition,
	2009.
	2. Sutton, R. S., & Barto, A. G. Reinforcement Learning: An Introduction. MIT
	Press, 2nd Edition, 2018.

POs	PO1	PO2	PO3
COs			
CO1			
CO2			
CO3			

Correlation levels1, 2 or 3 as defined below:

Course	Title of the course	Program	Tota	l Number	of contact h	ours	Credit
Code		Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives				(H)	
		(PEL)					
	SUSTAINABLE	PEL	3	0	0	3	3
CH9042	PROCESS						
	TECHNOLOGY						
Pre-requ	isites	Course Asse	essment me	thods (Co	ntinuous (C1	Γ) and end	
		assessment (EA))					
Basics of	Chemical Process	CT+EA					
	nvironmental						
Engineeri	ngineering						
Course	 Understand 	and apply sus	stainability p	orinciples	in process te	echnology.	
Outcome	• Design ener	gy-efficient a	nd environm	nentally fri	iendly chem	ical proces	sses.
	 Analyze cas 	e studies to id	entify best	practices f	or sustainab	ole chemic	al
	production.						
Topics	Module 1: Principle				-		
Covered		als of sustaina	•	_	_		
		nistry principle		=			
		ensification an			•		
	Module 2: Cleaner Production and Energy Efficiency (14 Hours)						
		 Cleaner production strategies and assessment techniques. 					
		Energy efficiency in process industries: Pinch analysis and heat integration.					
	Renewable energy integration into chemical processes.						
	Module 3: Emergin	g Sustainable	Technologi	ies (16 Ho	urs)		

	 Carbon capture, utilization, and storage (CCUS). Circular economy in chemical industries: Waste minimization and valorization. Case studies: Sustainable technologies in petrochemicals, polymers, and pharmaceuticals.
Text Books,	Textbooks
and/or	1. Dunn, J. B., & Posen, I. D. Sustainable Process Engineering . McGraw Hill,
reference	2019.
material	2. Manahan, S. E. Green Chemistry and the Ten Commandments of
	Sustainability. ChemChar Research, 2nd Edition, 2011.
	Reference Books
	1. Anastas, P. T., & Warner, J. C. Green Chemistry: Theory and Practice. Oxford
	University Press, 1998.
	2. Smith, R. Chemical Process Design and Integration. Wiley, 2nd Edition, 2016.

POs	PO1	PO2	PO3
COs			
CO1			
CO2			
CO3			

Correlation levels1, 2 or 3 as defined below: